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Abstract—Researchers at the Laboratory of Artificial Intel-
ligence and Robotics (LAIR) and the Center for Intelligent
Systems Research (CISR) from the University of Idaho (UI) have
developed a message anticipation module for use by members
of a fleet of autonomous underwater vehicles (AUV). The test
scenario is a magnetic signature assessment (MSA) task, in which
a fleet of five AUVs must simultaneously pass under a moving
Target Ship (TS) at a predetermined location. During the task the
TS informs the AUVs regarding its progress, allowing the AUVs
to meet the TS at that measurement point despite variations
in the TS’s velocity. However, the underwater acoustic modems
used by the actual AUVs are both low bandwidth and noisy.
Thus, messages from the TS may be infrequent or erroneous.
The goal of the anticipation module is to anticipate the TS’s
messages and, when necessary, use the anticipated message to
fill in gaps left by dropped or erroneous messages. Successful
anticipation depends on an agent having a good knowledge of its
environment and mission. Research has shown that anticipation
of words and sentences is central to human communication
and language understanding. An agent that utilizes similar
anticipation methods and is capable of using artificial intelligence
techniques to generate, utilize, and adapt its message anticipation
module with a more accurate one, would represent a significant
advance in autonomous agents. Five different anticipation models
were created, 4 of them are based on a neural network model and
one of them is based on a fuzzy logic controller model. In order
to test effectiveness, robustness, and adaptability of the models
used in the anticipation module, multiple tests were conducted
in which the behavior of the target ship and the gap between
messages were varied. All of the tested anticipation models were
able to significantly reduce the error in the meeting point when
there was a gap between messages.

Keywords - Intelligent control, neural networks, fuzzy logic,
anticipation

I. INTRODUCTION

Currently, autonomous agents are severely hampered by
their inability to effectively and efficiently address novel,
changing, or noisy environments, conditions, and missions.
Agents are capable of operating autonomously with consider-
able success, which demonstrates the potential of autonomous
agents, but the successes are within limited and accurately pre-
defined, and relatively noise-free, environments and missions.
More widespread, effective use of autonomous agents will
remain out of reach until they are capable of autonomously
adapting to noisy and changing conditions.

A common difficulty for autonomous vehicles acting in
concert is lost or erroneous messages, either due to com-
munication errors or to human error. Such communication
difficulties lead to unexpected changes in the environment
(e.g. if the agent receives incorrect information about the
environment or fails to receive important information) and
create a noisy operating environment. Thus, the goal of this
research is to develop a method by which agents can learn to
address the particular problem of noisy and/or low bandwidth
communications. Our approach is to include an anticipation
module that allows autonomous agents to anticipate future
messages based on previous messages and current mission con-
ditions. When messages are lost or erroneous, the anticipated
messages can be used to either fill in for the missing message
or help correct erroneous messages.

This article is divided as follows: Section II presents a brief
overview of previous work and research which the ideas in this
paper are based on. Section III presents a description of the
simulated environment used to recreate a magnetic signature
mission using 5 AUVs. Section IV presents two different
artificial intelligence methods (artificial neural networks and
fuzzy logic) that solve the communication problem recreated
between the group of submarines and the ship. Section V
presents the 3 behaviors and 3 communication situations used
to test the accuracy and robustness of the system. Finally,
section VI presents some relevant conclusions of the project
and the results.

II. BACKGROUND

This project is part of an on-going project on using
Autonomous Underwater Vehicles for multiple tasks includ-
ing mine-countermeasure (MCM) and magnetic signatures
assessment (MSA) missions which are being developed at
University of Idaho (UI) ([1], [2], [3], [4], [5], [6], [7]).
Because these tasks require coordination between multiple (2-
5) AUVs, accurate communications are critical. Thus, a major
concern is the low bandwidth and potentially unreliable nature
of underwater communications. In this paper, we test the use
of anticipated messages as a mean to overcome the limitations
of the communication system. Anticipation is a strategy that
has been tried before for other types of problems including
trying to imitate the natural language of humans in order
to correct acoustic messages between Unmanned Underwater
Vehicles (UUV) [8] and helping a simulated robot used inside a



video game anticipate player movement [9]. Both approaches
use previous, but not necessarily full, knowledge about the
desired behavior of the model to increase prediction accuracy
during the tests. However, the anticipation strategies are not
the same as are used in this paper. The anticipation used in
[8] is based on a linguistic logic which analyses the structure
of a binary string using syntactic, semantic, pragmatical and
behavioral logic. In [9], the anticipation strategy is based on
a set of general rules which allows the robot to generate a
plan in order to ambush the other player in specific situations
effectively. Both strategies are based on static rules and use
several variables to get the information from the environment
to make a decision. In this research, we present two additional
strategies for anticipation, which use flexible rules, limited
information from the environment, and one of the models is
capable of learning.

In [10] and [11], anticipation is used to predict a stock price
behavior. Each article describes a different strategy to solve this
problem: [10] solves this problem by using a neural network
and [11] uses fuzzy logic model. Both articles used real stock
prices values as input data in order to predict future behaviors.
The results showed that these models are capable of solving
this type of anticipation problem. Other similar approaches
to solve this problem also use a neuro-fuzzy model [12]
and a model based on support vector machines (SVM) [13].
This work supports the idea that anticipation is a promising
approach although in that research it was not applied to robotic
agents.

Following these ideas the Center for Intelligent Systems
Research (CISR) at UI has developed a computational ar-
chitecture called Language-Centered Intelligence (LCI) which
allows autonomous agents to reason hypothetically about their
environment and mission via ”anticipated” observations [1].
These anticipated observations guide the agent in its mission
and serve, when compared to actual, future observations, to
measure the accuracy of the current model, thus, mitigating
the risk of identifying a failure in current model.

The test problem in this research is a Magnetic Signature
Assessment (MSA) mission which uses a fleet of AUVs to
record the magnetic signature of a target ship (TS). The AUVs
must pass under the TS in a pre-defined measurement zone,
allowing them to measure the TS’s magnetic signature. In
a full mission the TS makes two to four passes through a
measurement zone; if two passes, then one East/West pass
and one North/South, and if four, then one pass in each of the
cardinal directions. During each pass through the measurement
zone, the fleet of AUVs passes underneath the ship. The system
assumes that there is a sufficient number of AUVs to capture
all of the necessary data for each direction with a single pass
and that the AUV fleet approaches the ship from the opposite
heading (i.e., bow to bow). The simulation used in this research
to test the anticipation models is based on one pass in the
MSM.

III. ENVIRONMENT

The simulation environment was developed using C# and
the AForge library for the AI resources. The environment
simulates one pass of the MSA mission with a focus on the
control of the group of AUVs using the communication link

Fig. 1. Simulation environment for the anticipation tests showing a typical
starting configuration. The five AUVs are on the left, their initial positions are
semi-randomized and their headings are random. The target ship (TS) is on
the right, it always begins with the same position and heading. Ovals are the
AUVs’ waypoints.

with the TS. In the simulation, the TS regularly broadcasts its
current progress toward the measurement box to the AUVs.
Using this information, the AUVs are able to adjust their
current speed in order to maintain formation and reach the
meeting point at the same time as the TS. The metric of success
is how close the AUVs are to the center of the measurement
box when they pass under the TS. A fuzzy logic controller
on each AUV is in charge of this function, it uses the current
progress of the AUV and the message that it receives from the
TA to determine speed. The heading of the AUVs is determined
by 3 sets of waypoints, which are used to calculate the current
progress of the AUVs (the sets of ovals in Figure 1). To
increase the complexity and realism of the problem, the AUVs
are assigned random starting positions and headings in each
run. Figure 1 shows a group of AUVs and the ship at the start
of a mission run. Figure 1 also shows the waypoints along the
path of the AUVs (ovals).

The TS can be configured with any of 3 different behaviors
that, in general, make the TS change its speed and/or its
acceleration in different sections of a mission. This behavior
forces the AUVs to vary their speed accordingly, in order to
reach the measurement point at the same time as the TS. The
TS behaviors are described in detail later in Section V. The
AUVs initially have no information about which behavior was
chosen for TS, thus they must rely on the messages from the
TS to reach the measurement point at the same time as the
TS.

IV. METHODS

The simulation determines how the TS behaves and how
often the AUVs receive messages from the TS regarding its
progress. The TS uses a fuzzy logic controller to control
its speed. The controller calculates fuzzy membership in five
variables that measure progress. These five fuzzy values are
sent as the message from the TS to the AUVs. The five
fuzzy variables are: way behind, behind, on schedule, ahead, or
way ahead, and are calculated based on the initial, scheduled
meeting time (Figure 2). Each variable can have a value
between 0 and 1, but, because the message is informing about
a specific state of the TS, there can be only at most 2 variables
whose value is greater than 0.

The ship sends messages at specific, adjustable intervals.
Longer intervals represent limited bandwidth or a noisy en-



Fig. 2. Messages from the target ship (TS) consist of five fuzzy values.

Fig. 3. Message-list structure: the anticipation module uses a history of
previous to generate the possible next message. The Neural Network models
were trained using both structures; the fuzzy logic model use only the structure
with 2-messages input

vironment where messages often do not arrive. In a situation
like this, the AUVs do not receive updated values for the TS’s
position at each time step. Their default solution is to assume
that the ship is returning to the initial schedule, and the AUVs’
fuzzy controllers attempt to return to the schedule as well.

Our alternative approach is based on anticipation. An
anticipation module in each AUV attempts to generate an
anticipated message when a message from the TS is missing.
The anticipation module is configured to create a new antic-
ipated message from the TS based on a set of the previous
messages received from the ship. When a message is missing,
the anticipated message is used by the AUV as the regular
message allowing the AUV to update its current velocity by
anticipating the TSnext message.

A. Anticipation

Anticipation is performed by using a list of prior messages
as inputs to predict a missing message. This list includes a
fixed number of recent messages, thus the anticipation module
works with recent information and not the overall record
(Figure 3). Every time the list is updated with a new message
from the ship, the oldest message is removed from it, thus the
list of previous messages used to anticipate future messages is
a FIFO list.

Several models for the anticipation module based on artifi-
cial neural networks and fuzzy logic were tested to determine
which is able to anticipate future messages most accurately.
Either 2 or 5 previous messages are used, to test whether a
model can produce better results if it uses a longer message
history to anticipate future messages.

B. Neural Networks

To test the robustness of the neural network approach and
learning algorithms 4 models were compared. The number of
messages used as inputs and the numbers of neurons in the
single hidden layer were modified to measure the resulting
behavioral changes (Figure 4). The following combinations
were tested:

Fig. 4. General Neural Network structure. The network has 10 or 25 inputs,
depending on the size of the message history, a single hidden layer, and 5
outputs, one for each value in the anticipated message. A sigmoid function is
used for the activation function.

TABLE I. GENERAL FUZZY RULES

````````Error
Message MZ TL L M H TH MO

VN MZ MZ TL TL L M MO

N MZ TL L L M H MO

EZ MZ TL L M H TH MO

P MZ L M H H MO MO

VP MZ M H TH TH MO MO

• 2 messages (10 inputs) and 5 neurons in the hidden
layer.

• 2 messages (10 inputs) and 10 neurons in the hidden
layer.

• 5 messages (25 inputs) and 5 neurons in the hidden
layer.

• 5 messages (25 inputs) and 10 neurons in the hidden
layer.

The neural networks were trained using back-propagation
([14] and [15]). 10000 epochs were used in the training phase
of each neural network. Training data consisted of messages
from the 3 TS scenarios described below. Note that a single
neural network was trained on and tested on all 3 cases, so it
had to learn to generalized across the 3 test behaviors of the
TS.

C. Fuzzy Logic

One fuzzy logic model was tested. 2 previous messages
are used as the inputs for this model [14]. The two previous
values of each of the 5 fuzzy values is used to calculate the
next, anticipated, value. E.g. the two previous values of the
first fuzzy variable are used to anticipate the future value, by
evaluating the last received value and the difference between its
the last received value and the value before that. Using the two
previous values allows the anticipation module to determine
how fast each fuzzy value is increasing or decreasing as part
of the anticipation process.

The value of each variable in a message is assigned a
membership in 7 fuzzy sets: Zero (MZ), Too Low (TL),
Low (L), Medium (M), High (H), Too High (TH) and One
(MO) (Figure 5(a)). The change in value of each variable (the
difference between the previous two values in a message) is
assigned a membership in 5 fuzzy sets: Very Negative (VN),
Negative (N), Zero (EZ), Positive (P), Very Positive (VP)
(Figure 5(b)). Based on these sets, a group of basic rules were
created, defined in as a fuzzy associative matrix: Table I.

Basically, the fuzzy logic module takes each of the 5 values
inside the most recent message (Figure 2) and compare it with



(a) Variable Input (b) Fuzzy Difference Input

Fig. 5. Fuzzy Sets that describes the current current value of one variable inside the message and the difference that it has with it previous value

the value from message before that by applying the rules in
Table I. These rules are used to anticipate the next value for
each of the five variables in a TS message.

An additional small set of rules was added to the fuzzy
logic module to allow it to create a crossed relationship
between the values in a message. The additional fuzzy rules
associate the anticipated value of a message value mi with
its neighboring message values. These fuzzy rules are used
to check if a value in a message has a current value of 0
and if one of its neighbors (message values mi−1 or mi+1)
are close to their medium value and decreasing. If so, it can
be anticipated that the message value mi will be about to
change. The actual fuzzy rules are:
TLmi = MZmi&&Mmi+1&&(NEi+1||V NEi+1)
TLmi = MZmi&&Mmi−1&&(NEi−1||V NEi−1)

These rules anticipated that if a message value’s is currently
zero (MZ), it’s anticipated membership in the TL (two low)
set depends on the neighboring messages values.

Note that the TS message describes the condition of the TS
at most using 1 or 2 of the 5 variables in the message; the other
4 or 3 variables remains at 0. For example, if the TS is getting
behind schedule, the values for the sets behind schedule and
way behind schedule get progressively larger (Figure 2) while
the other values remain at zero.

V. RESULTS

To evaluate the anticipation module and its robustness, 3
different behaviors for the TS were created:

• On schedule (OnS): the TS maintains a constant
velocity using its correct speed and reaches the mea-
surement point on schedule.

• 0.8 speed (0.8S): the TS maintains a constant velocity
of 0.8 of its correct speed. Thus, the TS reaches
the measurements point significantly behind schedule
and the actual measurement, which take place when
the AUVs and the TS pass each other, may occur
significantly before (to the right of the measurement
box in Figure 1) the measurement point.

• 1.2 speed (1.2S): the TS maintains a constant velocity
of 1.2 of its correct speed, and reaches the measure-
ment point significantly ahead of schedule and the
actual measurement, which take place when the AUVs
and the TS pass each other, may occur significantly
after (to the left of the measurement box in Figure 1)
the measurement point.

The anticipation module was tested using 6 different strate-
gies. No anticipation, 4 different neural networks, and a fuzzy
logic model:

• NA: No Anticipation

• NN1: 10 inputs (2 messages) and 5 neurons in the
hidden layer.

• NN2: 10 inputs (2 messages) and 10 neurons in the
hidden layer.

• NN3: 25 inputs (5 messages) and 5 neurons in the
hidden layer.

• NN4: 25 inputs (5 messages) and 10 neurons in the
hidden layer.

• FL: Fuzzy Logic, using 2 input messages.

The anticipation modules were tested using 2 different
strategies:

• Without feedback: the module uses only the actual
messages received from the TS (Figure 6(a)). When a
message from the TS does not arrive, the anticipation
module uses the last N (2 or 5) received messages
to anticipate the next message. A list is used to store
these messages and it is updated only when a new
message from the TS is received.

• With feedback: the anticipation module treats antic-
ipated messages as received messages (Figure 6(b)).
The message list is updated every time a new message
is received from the TS. But when a message does
not arrive, the anticipated message is included in the
message list that will be used the next time a message
is anticipated.

For training, AUVs received messages every time step, the
optimal condition for all the TS behaviors. For testing the
number of time-steps that the TS waits to send a message was
varied. The three test cases were, 1 message per time step, one
message every 2 time steps, and 1 message every 6 time steps.

Performance is judged by measuring the distance between
the target measurement point and the actual meeting point
between the TS and the AUVs. Each test consists of evaluating
one anticipation model for each value of each experimental
variable (steps/message, TS behavior). 10 trials were per-
formed for each test, which gives a total of 3600 trials for the
entire experiment, 720 trials for each anticipation model. Table
II shows the average values for the meeting points between
the group of AUVs and the ship. Lower values are better.
The highlighted values represent the best results between the
5 anticipation models for each test.



TABLE II. ABSOLUTE VALUE OF GROUP MEETING POINT ERROR AND STANDARD DEVIATION. EACH ANTICIPATION MODEL SHOWS THE RESULTS OF
RUNNING THE SIMULATION WITHOUT FEEDBACK (TOP VALUE), AND WITH FEEDBACK (BOTTOM VALUE), RESPECTIVELY. FOR EXAMPLE, FOR THE 0.8

BEHAVIOR WITH 6 TIME STEPS PER MESSAGE (6S/M) AND WITHOUT ANTICIPATION, THE TS AND AUVS MET 41.77 M AWAY FROM THE TARGET POINT;
WITH ANTICIPATION USING NO FEEDBACK AND NN1, THEY MET ONLY 13.65 M AWAY FROM THE TARGET POINT; AND WITH ANTICIPATION USING

FEEDBACK AND NN1, THEY MET 14.95 M AWAY FROM THE TARGET POINT.

XXXXXXXTest
Model NA NN1 NN2 NN3 NN4 FL

OnS

1 S/M 1.06(0.27) 1.06(0.28) 1.06(0.28) 1.06(0.27) 1.06(0.28) 1.06(0.28)
1.06(0.28) 1.06(0.28) 1.06(0.27) 1.06(0.27) 1.06(0.28)

2 S/M 0.70(0.51) 0.89(0.26) 1.01(0.28) 1.02(0.27) 1.00(0.27) 1.16(0.28)
0.87(0.28) 1.02(0.27) 1.02(0.26) 0.97(0.27) 1.00(0.26)

6 S/M 0.70(0.62) 0.75(0.28) 0.99(0.27) 1.00(0.27) 0.93(0.28) 1.21(0.29)
0.51(0.63) 0.66(0.28) 0.82(0.74) 0.70(0.62) 0.61(0.26)

0.8S

1 S/M 10.98(0.18) 10.98(0.18) 10.98(0.18) 10.98(0.18) 10.98(0.18) 10.98(0.18)
10.98(0.18) 10.98(0.18) 10.98(0.18) 10.98(0.18) 10.18(0.28)

2 S/M 28.30(0.27) 12.66(0.32) 12.56(0.46) 11.92(0.44) 12.68(0.19) 11.30(0.43)
12.66(0.19) 12.27(0.19) 11.95(0.44) 12.43(0.46) 11.30(0.43)

6 S/M 41.77(0.26) 13.65(0.29) 10.99(0.18) 12.47(0.36) 13.19(0.26) 11.59(0.31)
14.98(0.28) 14.90(0.31) 13.74(0.06) 15.65(0.42) 14.05(0.25)

1.2S

1 S/M 1.09(0.26) 1.09(0.26) 1.09(0.27) 1.09(0.26) 1.09(0.26) 1.09(0.26)
1.09(0.26) 1.09(0.26) 1.09(0.26) 1.09(0.26) 1.09(0.27)

2 S/M 16.25(0.08) 2.87(0.27) 3.83(0.28) 3.53(0.27) 3.81(0.27) 1.63(0.25)
2.77(0.29) 3.77(0.27) 3.96(0.27) 4.00(0.28) 2.63(0.51)

6 S/M 31.67(0.07) 4.46(0.26) 5.07(0.27) 5.02(0.39) 4.93(0.26) 2.47(0.32)
6.09(0.49) 8.60(0.15) 18.87(0.04) 7.60(0.19) 10.57(0.14)

(a) Without Feedback (b) With Feedback

Fig. 6. Anticipation Strategies: the anticipation module can generate a brand new message every time a real message is inserted in the queue of messages or
it can use a feedback to insert a new anticipated message in the queue every time a real message is missing which allows the module to generate a brand new
message more often.

The results with no anticipation (the column labeled NA in
Table II) show that when the TS is on schedule (rows 1, 2, and
3) the TS and AUVs meet close to the designated meeting point
- just over 1 simulated meter away - despite the randomized
starting positions and angles of the AUVs. This result confirms
that the fuzzy controllers responsible for keeping the TS and
AUVs on schedule perform correctly.

The results with no anticipation, when the TS is off sched-
ule (rows marked 0.8S and 1.2S) show that when messages are
received frequently (rows labeled 1M/S) the AUVs do fairly
well even without anticipation, although when the TS is slow
(row 0.8S) the are off by roughly 10 meters. However, as
messages become increasingly infrequent (2S/M and 6S/M)
AUVs with no anticipation fail to meet the TS near the
designated meeting point, with larger message gaps leading
to worse results.

Table II shows that all anticipation models showed a
significant improvement over no anticipation, when the TS
was off schedule and there were gaps between the messages.
I.e. anticipation does, partially, and in many cases completely,
makes up for the large gap between messages. In the worst
case, a slow TS (0.8S) and infrequent messages (6S/M), AUVs
without anticipation met the TS, on average, almost 42 meters
from the designated measurement point. In contrast, AUVs
with any of the anticipation models, on average, met the TS
within 15 meters of the designated point.

Overall NN1 and the fuzzy logic models had better results
on 5 of the test cases each. These two models showed the
smallest error between the correct meeting point and the one
obtained in the experiment. Model NN4 also had good results
on most of the tests, but did not have the best results in any
of the 18 configurations used for the experiment.

In general anticipation models using feedback performed
slightly worse than models not using feedback.

Figures 7 and 8 show quartile plots for the results obtained
from all the anticipation models for 2 TS behaviors: OnS and
0.8S. Each figure shows 3 main groups which represent the
three types of simulations that were tested: No Anticipation,
Anticipation with Feedback and Anticipation without Feed-
back. Within each group, there are three additional groups
that represent the possible message gaps: 1 step/message, 2
steps/message, and 6 steps/message. Each of those groups
has 5 elements which represent the anticipation models that
were used for this experiment: NN1, NN2, NN3, NN4, and
FL. Figure 7 shows that as the message gap increases there
is generally wider variability in the meeting points. This is
also true in Figure 8, but the change in scale obscures the
dispersion. Figure 8 also shows how increasing the message
gap significantly impacts the meeting point when there is no
anticipation of the missing messages, but not with anticipation.
Figure 7 suggests that the dispersion in the meeting points is
generally reduced by using anticipation.



Fig. 7. Average and quartile results with all anticipation models when the TS is on schedule. Overall results are similar, with small errors in the meeting point
for all cases, but using anticipation reduces the variability in the meeting point, except for anticipation using the neural network with 5 input messages and 5
neurons in the hidden layer, with feedback, when there one message is received every 6 time steps.

Fig. 8. Global average of the meeting point results for the AUVs obtained with all anticipation models when the TS is traveling at 0.8 of its correct speed.

Figures 9, 10, 11 and 12 show the average position of the
the individual AUVs (1-5) with NN1 and FL (which produced
the best behaviors during the experiments). Figures 9 and 11
show the results when the TS behavior is OnS, and Figures
10 and 12 show the results for behavior 0.8S. These figures
show that both anticipation models reduce the error for every
AUV. Equally important these figures show that the errors
for the individual AUVs are similar. Thus, in general the
anticipation modules not only reduce the meeting point error,
but also maintain the formation that the group has in optimal
conditions.

Figure 9 shows that anticipation reduces the variation in the
meeting point, keeping the AUVs in formation. For example,

once the value of the steps/message increases, the variation
in AUV position with no anticipation increases considerably,
especially in AUV 5. The other 2 models, which use anticipa-
tion, sproduce much smaller variation in the AUVs’ positions.
For example, the variation for AUV 5 decreases considerably
with both models compared to no anticipation. Additionally,
anticipation helps the AUVs get to the meeting point in for-
mation. Most notably the error with both anticipation models
and 2 or 6 steps per message were similar to the results with
no anticipation and one message per time step. This show that
anticipation is successfully “filling in” the missing messages.

Figures 11 and 12 show the results for the same cases as
in Figures 9 and 10 but using the fuzzy logic model. Figure



Fig. 9. Average and quartile results for the meeting point by AUV, when using a neural network with 10 inputs and 5 neurons in the hidden layer when the
TS is on schedule. AUV 5 tends to be slightly further from the measurement point. Variability in the AUV position, particularly for AUV 5, is highest with no
anticipation.

Fig. 10. Average and quartile results for the meeting point by AUV, when using a neural network with 10 inputs and 5 neurons in the hidden layer when the
TS is using 0.8 of its correct speed. All AUVs have similar errors, showing that they remain together. Errors are much larger when there is no anticipation and
a messages are infrequent.

11 shows that the fuzzy logic model also reduces the variation
in the AUVs’ position when the anticipation is enabled, but
slightly less than the neural network model. On the other hand,
Figure 10 shows that the fuzzy logic model does a better job
of maintaining the group formation, getting them closer, on
average, to the correct meeting point.

VI. CONCLUSIONS

The results shows that all of the anticipation models were
able to significantly reduce the error in the meeting point when
the TS was off schedule and messages were infrequent. This is

a very promising result, as it strongly suggests that anticipation
can be an effective method to address communication problems
cause by noisy or low bandwidth communication channels. In
our results NN1 model had, in general, the best performance
followed by the fuzzy logic model. The other neural network
NN2 and NN3 models had good results with values that were
better than the NN1 and fuzzy logic models, but only under
a few of the test cases. Both NN1 and the fuzzy logic model
only used the two previous models, suggesting that, at least for
this problem, a short message history is sufficient to anticipate
future messages.



Fig. 11. Individual average of the meeting point results obtained using fuzzy Logic when the TS is on schedule.

Fig. 12. Individual average of the meeting point results obtained using fuzzy logic when the TS is using 0.8 of its correct speed.

The results (Figures 9, 10, 11 and 12) also show that antic-
ipation models without feedback produced better results than
models with feedback, although both models were successful
at significantly reducing the error in the meeting point. This
suggests that using feedback, i.e. using anticipated messages
to predict future messages, may magnify the errors in the
anticipated messages.

All of the anticipation models also reduced the variation in
the meeting position with the TS, but models with feedback
had slightly larger variations than models without feedback.
Overall, it is clear that the anticipation models presented here
are effective at anticipating messages and that the anticipated
messages can be successfully used in the place of lost messages
(or messages that are forced to be discarded due to errors).

Finally, it is worth noting that the test problem used in these
experiments required a fleet of five autonomous to reach a
specific location, as a group, at a time determined by the
behavior of another vehicle. This type of coordinated, group
behavior with a dynamic goal represents a very general and
useful behavior, thus the results of this research has potential
benefits for a wide range of applications.
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