
Neuroevolution of a trail following robotic controller for an

autonomous CotsBot

Travis DeVault, Nathaniel Ebel,
Juan Marulanda, Jayandra Pokharel,
Terence Soule, Robert B. Heckendorn

Abstract

In this paper we present a novel approach to encapsulated on-board evolution
using an inexpensive, but computationally powerful, robotic platform and learning
by demonstration. Encapsulated evolution, in which a robot maintains an evolv-
ing population of behaviors, is a leading technique for allowing robots to adapt,
in real-time, to changing conditions and environments. However, research on en-
capsulated evolution has been hampered by a lack of inexpensive robots with the
computational power to run an evolutionary algorithm. Additionally, encapsulated
evolution commonly uses unsupervised learning techniques, which face numerous
difficulties in real-world environments. In this paper we present two approaches
to overcoming these difficulties. First, we present an inexpensive, computationally
powerful robot capable of maintaining large populations of complex individuals.
Second, we combine encapsulated evolution with learning by imitation, a supervised
learning technique, which avoids many of the problems associated with unsupervised
learning in the real world.

Our results show [...]

1 Introduction

In encapsulated evolution robots maintain an on-board population of constantly evolving
controllers. Because the controllers evolve in real time encapsulated evolution has great
shown great promise in its ability to allow robots to adapt, in real-time, to changing
environments or conditions. Successes with encapsulated evolution would represent a
significant advance in robots’ ability to perform efficiently and autonomously in complex
or dynamic environments.

Unfortunately, maintaining an evolving population on-board a robot is computa-
tionally expensive, particularly if the population must evolve in real-time and if the

This material is based in part upon work supported by the National Science Foundation under
Cooperative Agreement No. DBI-0939454. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

1

population consists of complex controllers. Thus, most research in encapsulated evolu-
tion has been done in simulation. This introduces simulation to reality problems (also
referred to as the reality gap) [10] and does not accurately portray encapsulated evo-
lution’s true potential to produce robots that can adapt to the real world. The little
research that has been performed with physical robots has either been limited to very
simple representations that can be evolved on a small processor [2], extremely large,
expensive robots [?], or both [].

A further difficulty with encapsulated evolution is that it has traditionally used un-
supervised learning techniques, in which fitness is measured via a time-sharing system.
Each individual in the population is placed in temporary control of the robot and re-
ceives a fitness value based on how well the robot performed while that individual is in
control. This introduces three significant problems. First, evaluation of every member
of a population requires allowing each individual temporary control of the robot, which
is either extremely time intensive or severly limits the size of the population. Second,
performance of the robot suffers when a poor individual is in control. Third, in practice
this is a very noisy fitness measure as an individual’s fitness depends on the state of the
robot when it gains control. For example, if the previous individual left the robot in a
particular difficult situation, then the current controller’s fitness will suffer. Techniques
such as racing [7] (described in detail below) have been developed to minimize these
drawbacks, but any unsupervised learning technique will suffer from these limitations to
some extent.

To overcome the computational requirements of encapsulated evolution we use a
robot designed using Commodity Off The Shelf (COTS) design principles. The robot
uses a smart phone for processing, giving it significant computational power and memory.
The complete design is described in Section 3.1.

To avoid the problems associated with unsupervised learning we use an evolutionary
approach based on learning by demonstration. The robots “observe” a human operator
and learn to imitate the human’s control decisions. Because the correct control decisions
are known (assuming that the human operator always, or at least usually, makes the
right decisions) individuals can be evaluated based on their ability to replicate the human
operator’s choices without needing to give them control of the physical robots.

Our results show [...]

2 Background

To effectivley discuss different implementations of evolutionary robotics it is helpful to
use a general classification scheme. Several classification systems have been proposed in
previous works [14, 6]. The system presented in [6] classifies embodied evolution, where
fitness evaluations are performed on a physical robot, based on where the evolutionary
processes take place.

Along with a new method of classification, [6] also presents a vocabulary with which
to effectively describe evolutionary robotics. The term “embodied” refers to the physical
testing of fitness with a real-world, physical robot. The rest of the vocabulary focuses

2

on the when, where, and how of the evolutionary process.

1. “off-line” (evolution occurs before run time)

2. “on-line” (evolution occurs during run time)

3. “off-board” or “extrinsic” (evolution not performed on the robot)

4. “on-board” or “intrinsic” (evolution is performed on the robot)

5. “encapsulated” or “centralised” (evolutionary process is restricted to a single robot)

6. “distributed” (evolution is performed across multiple robots)

Much of the research into evolutionary robotics has focused on optimzing a controller
to allow a single robot to complete a given task during off-line evolution in which the
robotic agent is evolved and evaluated in simluation, and the best individual solution
is transfered to a physical robot [9]. While this approach works well for some prob-
lems, it has several important limitations. Firstly, when evolution is done off-line, the
robot does not continue to evovle after the simulation is finished so it cannot adapt to
changing environments. The second limitation is the difficulty in simulating real world
environments, particularly when dealing with inputs such as lighting, texture, and sound
[4]. Because of this, controllers created during simulation are susceptible to decreases
in effectiveness once transfered to the real world [3, 10]. This decrease in performance
is referred to as the sim-to-reality problem. To create controllers that perform well in
real-world environments it becomes neccessary for controllers to be evolved and tested
on a physical robot during real-time operation. This becomes increasingly important
with highly complex and dynamic environments that cannot be accurately simulated.

One on-line, on-board approach is encapsulated evolution in which each robot runs its
own evolutionary algorithm on-board, maintaining a population of potential controllers,
and testing those controllers on-line during operation. One of the first proposed methods
for encapsulated evolution is the (1+1)-ONLINE algorithm which is based on the (1+1)
evolutionary algorithm [2, 11]. This work was extended to a (µ + 1)-ONLINE algorithm
[6, 7, 8, 1]. These approaches were designed under the assumption that the operating
hardware is limited both in processing power and memory. Therefore, the evolutionary
algorithms are designed to be “lightweight” and to operate on small population sizes.
While they have been successfully applied to a number of test problems including fast-
forward, collective patrolling, and balancing, more powerful hardware and algorithms
could provide better performance in real-world applications.

While these existing approaches demonstrate effective implementations of encapsu-
lated evolution, actual testing was done in simulation. To more realistically test the
effectivness of encapsulated, on-line, on-board evolution it must be tested on actual
robots during real operation.

****** Still need to add the following information *******

• Our work with color following showing that more complex representations are
better and therefor other hard ware is needed.

3

• Other examples of current hardware (e.g. Kernback et at ”Evolutionary robotics:
the next-generation-platform...”) showing CPU weaknesses

• How can improved hardware such as our CotsBots increase the effectiness of evo-
lutionary approaches.

• Papers citing problems with unsupervised learning in the real world.

• Papers (review paper) on learning by imitation/demonstration

– Overview of learning my imitation [?]

– Imitation learning done with the crusher platform[?]

– Learning by demonstration for soccer behaviors [?]

Learning by imitation shows great potential in applications of robotic learning and
evolutionary robotics. Current evolutionary approaches are designed to operate with
limited resources and may not provide enough computational power to solve difficult
real world problems. Our work demonstrates that learning by imitation can be used to
evolve robotic controllers on a low cost, computationally powerful robotic platform for
the real world task of trail following.

3 Methods

3.1 Test Robot

These experiments were conducted with a physical robot designed and built at the Uni-
versity of Idaho following Commodity Off The Shelf (COTS) design principles. An
approach that is becoming more common in robotics research (see for example [?, ?]).
The robot consists of three basic components:

The Brains – a smart phone, for these experiments a HTC Nexus One was used.
This phone has a 1GHz Qualcomm Snapdragon processor, with 512 MB of RAM, and a
Qualcomm Adreno 200 GPU.

The Spinal Cord – an Arduino based microcontroller with Bluetooth capabilities
which handles communication between the smart phone and the robot body. For these
experiments the DFRomeo microcontroller from DFRobot was used. 1 Currently the
microcontroller is only used to receive commands via bluetooth from the smart phone
and to activate the motors on the robotic platform accordingly. Thus, the computational
characteristics of the microcontroller are not a concern.

The Body – a mobile robot platform, for these experiments the Rover 5 thank
chasis was used.2 This is a small (22.5cm by 24.5cm), tracked, mobile robot platform.

1http://www.dfrobot.com/index.php?route=product/product&filter_name=Romeo&product_id=

56#.UltL4BaHrzI
2http://www.dfrobot.com/index.php?route=product/product&path=37_111&product_id=386#

.UltPFBaHrzI

4

Figure 1: Robot’s screen colored to indicate calculated road probabilities. The box at
the bottom is the region from which the road library is built under the assumption that
the box never leaves the desired road type.

It can run continuously for several hours while carrying the microcontroller and smart
phone.

Basically, the brains control the robot, the body moves the robot, and the spinal cord
transmits messages between the two via Bluetooth. The robot is completely untethered:
it uses the smart phone’s computational power to run “full-scale” evolutionary algorithms
and the phones built-in sensors as the robot’s sensors. For these experiments only the
camera is used as a sensor. During the human operation stage (described below) the
smart phone is connected via Bluetooth to a second smart phone that is used as a remote
controller.

3.2 Learning Framework

Our evolutionary approach combines learning by imitation, in which the robot attempts
to learn to imitate a human operator, and encapsulated evolution, in which the entire
evolutionary process is encapsulated within the robot. The overall process consists of
three general stages: human operation, learning, and autonomous operation. We begin
by giving a broad overview of the process, followed by a detailed description of each
component.

During human operation a human drives the robot, carefully following the desired
trail type. The human uses a remote control with discrete forward, left, and right
options. While the human is driving, the robot is building two sets of data based on
camera input. First, a library of safe, known road types is built from the input images.
Details about how the library is built are given in Section ??. The screen image is then
split into 40, 60px by 96px, regions and these subregions are used to calculate road
probabilities using the roads library (see Figure 1). These road probabilities combined
with a corresponding action make up the second set of data, which is used for training

5

during the learning stage.
In the learning stage the evolutionary algorithm is used to train a neural network to

generate the correct movement command when presented the trained probability/action
pairs. The evolutionary algorithm runs until 200 generations have been evolved and
evaluated and the individual with the best fitness is then used to control the robot in
autonomous mode.

During autonomous operation the robot uses the best evolved neural network to
continue to follow a test track autonomously. Input images are continuously compared
against the road library to generate road probabilities as inputs for the neural network
which then returns its trained action. For these experiments we measure successes and
the total number of corners traveled during autonomous operation. Successes on the test
track indicate how effective the robot was in learning generalized behaviors that can be
applied to different test problems.

It is likely that a more robust approach can be created by merging these steps. For
example, the learning algorithm can be run continuously in the background during hu-
man operation. (Human operators tend to send 1-4 control signals per second, this
leaves 100’s of miliseconds for training between commands, plenty of time for a smart
phone’s processor or processors to progress on an evolutionary algorithm.) This would
allow the robot to take over as soon as its evolving controllers were sufficiently reliable
at matching the human operator’s decisions. Similarly, if the robot seems to be per-
forming poorly or moves into a novel environment where its road recognition library is
no longer appropriate then the human can resume control and the learning process can
be continued.

In order to generate comparable results between trials, these experiments were con-
ducted with only a single iteration of the overall learning process, in a single environment.

3.2.1 Library of road recognition histograms

To determine the probability that a section of image shows safe road, a library of known
road types is generated during human operation under the assumption that whatever
is directly in front of the robot is acceptable road. Based on this assumption a small
50px by 50px region from the bottom center of the input image is used to build the
road library (see Figure 1). As in [13], image histograms were built from the sample
region and stored as models of the road. Normalized histograms for red, green, blue,
hue, and saturation components of the image were used as the road models. Using
features from both the RGB and HSV color space seemed to improve the performance of
recognizing road from non-road regions. The histograms were built using the OpenCV
function calcHist, normalized using the normalize function, and were then stored as a
ColorModel representing an example of a known road type.

When a ColorModel is created, it can either be used as a new example of an existing
road type (RoadModel), or it can be used to create an entirely new RoadModel. A Road-
Models is defined by a list of similar ColorModels. As new ColorModels are generated
and added to a RoadModel, the number of stored ColorModels in the list may reach
a max size threshold, in which case the ColorModel that has been selected as the best

6

match the lowest percentage of the time is removed before the new ColorModel is added.
This process is controlled by a histogram similarity threshold which for our experiments
was set to 0.75. If the highest correlation between the new ColorModel and all existing
ColorModels is less than the similarity threshold, the colorModel is considered to be a
new road type and is used to create a new RoadModel. If the similarity is above the
threshold, the ColorModel is added to the RoadModel with the highest correlation as a
new example of that road type. The RodeModels list uses the same max size threshold
as the ColorModel lists and if its size has reached this threshold the RoadModel that
has contained the best matching histogram the lowest percentage of the time is removed
before the new one is added. Two histograms’ similarity corresponds to the average
correlation between the two images from each RGBHSV component. Correlation tests
were performed with the OpenCV function compareHist where an output value of 1.0
means the two histograms are perfectly correlated and the values decrease towards -1.0.
Algorithm 1 describes the library creation process.

Algorithm 1 Road Library Creation

inputImage = getCameraImage()
safeRegion = inputImage.subRegion()
newColorModel = calculateHistograms(safeRegion)
{Find the best matching, exiting road model}
for all existingRoadModel ∈ roadModelList do

for all existingColorModel ∈ colorModelList do
correlation = compareHistograms(newColorModel, existingColorModel)
if correlation > bestCorrelation then
bestCorrelation = correlationAvg
bestRoadModel = existingRoadModel

end if
end for

end for
{Update or add to the road model list}
if bestCorrelation > similarityThreshold then

if bestRoadModel.size() == maxModelSize then
bestRoadModel.removeLeastUsedColorModel()

end if
bestRoadModel.addColorModel(newColorModel)

else
newRoadModel = createNewRoadModel()
newRoadModel.addColorModel(newColorModel)
if roadModelList.size() == maxModelSize then
roadModelList.removeLeastUsedModel()

end if
roadModelList.addRoadModel(newRoadModel)

end if

7

3.2.2 Image processing

The goal of the image processing step is to partition an image into regions and to assign
each of these regions a value corresponding to how likely it is to contain road. Thus,
during autonomous operation each image received by the phone’s camera is processed
and generates a set of inputs for the neural network, which decides the robot’s next
action.

When an image is received it is used to update the road library if the robot is in
training mode. Then, regardless of the operation mode, the entire image is partitioned
into an 8 x 5 grid of sub regions that are assigned a correlation value corresponding to
the highest correlation between the sub region’s RGBHS histograms and the histograms
stored in the road library. This creates an 8 x 5 array of road probabilities (one for each
of the sub regions in the image) which is used as the inputs to the controlling neural
network. Algorithm 2 describes the image processing step.

Algorithm 2 Image Processing

inputImage = getCameraImage()
for i = 0 to imageWidth by columnWidth do

for j = 0 to imageHeight by rowHeight do
subImage(j, x) = inputImage.submat(j, x)
bestCorrelation = 0
for all existingRoadModels ∈ roadModelList do

for all colorModels ∈ colorModelList do
correlationSum =0
for all feature ∈ RGBHSV FeatureSpace do
correlation+ = compareHist(subImage.feature, colorModel.feature)

end for
correlationAvg = correlationSum/5
if correlationAvg > bestCorrelation then
bestCorrelation = correlationAvg

end if
end for

end for
outputProbabilitiesList.add(bestCorrelation)

end for
end for

3.2.3 Neural network architecture

The neural network has forty input nodes, a single hidden layer consisting of five nodes,
and an output layer with three nodes. All of the nodes in the network use a sigmoid
activation function. The input layer corresponds to the forty 80px by 60px regions
in the partitioned image, one input per region. Each region is evaluated against the
constructed histograms of road models. A histogram is constucted input region and
then it’s correlation with each of the color histograms in the road models library is

8

Population size 40

Generations 200

Mutation rate .2

Crossover rate Uniform at .5

Selection method Tournament(size 3)

Table 1: Summary of the evolutionary algorithm parameters.

calculated. The highest correlation is used as the input value for each region. The three
output neurons correspond to the three discrete actions forward, left, and right. The
action is determined by the output neuron with the highest activation level. This is a
common approach to evolving ANN controllers for autonomous robots as demonstrated
in [4]. In cases of a tie, no command is sent to the robot. This would be a very extreme
edge case and never occured during our experiment.

3.2.4 The evolutionary algorithm

An important goal of this project is to test the feasibility of using smart phones for
encapsulated evolutionary learning by imitation. Thus, to determine the generality of
the approach we intentionally chose to use a simple, but general, evolutionary model.
It is likely that a more sophisticated evolutionary model, in particular one developed
for the evolution of neural networks such as NEAT [12] or hyperNEAT [5], would yield
better results, but it would be less clear that the results were applicable to a broad range
of evolutionary techniques.

We used a standard generational genetic algorithm (GA) to evolve the neural network
weights. Individuals were represented by an array of [N] doubles corresponding to the
[N] weights in the complete neural network. Initially the weights were randomly set in
the range [X to Y].

Selection was by...
Crossover was ...
Mutation was ...
The other parameters of the evolutionary algorithm are summarized in Table 1.

3.2.5 Test conditions and environment

The experimental procedure consisted of repeatedly training a robot on a simple track,
using the data collected during training to evolve a neural network, and then testing the
evolved neural network by letting it autonomously drive the robot on both the training
and testing tracks. The experiments were performed indoors in a well lit room; the
tracks were a light blue felt fabric track that contrasted well with the dark brown carpet
in the room. The shape of the two tracks are shown in Figure 3 and Figure 2). The
training track consisted of two 45 degree turns and a 6’ straightaway. The testing track
was designed to be more difficult and to test the evolved neural networks’ ability to

9

Figure 2: Track that the robots were tested on. This track is more difficult than the
training track because it contains sharper turns than the training track. The numbers
at each corner are identifiers used to describe how far around the track the robot was
able to navigate during testing (see Table ??).

Figure 3: This track is used to train the robot. The robot is trained by a human going
from the right hand side to the left hand side and back two times.

generalize. It consisted of two 90 degree turns, one 45 degree turn, and one 135 degree
turn.

10

Clockwise Counterclockwise

Corner Corner
3 2 1 4 1 2 3 4

21 16 15 12 20 15 15 9

Table 2: Number of successes out of 21 tests in each direction (clockwise and counter-
clockwise) on the training track by corner number (see Figure 2). Failures are progressive,
if the robot fails to negotiate the N th corner on a test, it doesn’t get to the next corner
on that test. E.g. when going clockwise the robot negotiated the first corner (Corner
3) 21 out of 21 tests. It negotiated the second corner (Corner 2) 16 out of 21 tests and
the third corner 15 out of 16 attempts.

At the start of human operation the robot was given 10 drive commands that are
used soley to build an initial library of RoadModels. Without this step, the road library
is empty at the start of the first training and doesn’t recognize the road as well as it
does after training. This leads to noisy training cases for the ANN. With an initial
library built at the start of training initial training cases more closely resemble later
ones and reduce the overall noise in the training data. The robot was then driven
along the training track down and back two times, although the exact number of given
commands depends on the human operator and the specifc training. On average this
training is sufficient to generate a library of 100 histograms for road recognition and
120-160 image/command pairs to using during learning. At the start of training, and
after each command, the robot receives a new image, processes it, generates network
inputs, and then draws the image to the screen coloring each subregion based on its
calculated probabilty of being road. The robot then waits to receive a drive command
from the human operator. When a command is received the specified action is saved
along with the image processing outputs as a training case for ANN training. Once
training was completed, the operator started the evolutionary process which generated a
neural network controller for the robot. This controller was then used to test the robot
during the autonomous stage of operation.

During autonomous operation the robot attempted to navigate the testing track
three times in the clockwise direction, and three times in the counterclockwise direction,
for a total of six tests. Each test started from corner 4 because it was perceived as the
most difficult, which allowed the robot to attempt as many corners as possible before
reaching the most challenging one.

4 Results

5 Conclusion

While the presented approach showed success in testing, there are several observed lim-
itations that affect the performance of the robot. Inputs from the camera and outputs

11

Clockwise Counterclockwise

Corner Corner
3 2 1 4 1 2 3 4

Times reached 30 30 23 19 30 27 20 20
Failures 0 7 4 5 3 7 0 6

Table 3: Number of failures in each direction (clockwise and counterclockwise) on the
training track by corner number (see Figure 2). Failures are progressive, if the robot
fails to negotiate the N th corner on a test, it doesn’t get to the next corner on that
test. E.g. when going clockwise the robot always negotiated the first corner (Corner
3). It failed to negotiate the second corner (Corner 2) 5 of the 21 times it reached it,
and failed to negotiate the third corner 1 of the 16 times it reached it. Note that the
robot never fails on corner 3 (45 degrees), which is the same angle as the training turn.
Failures only occur on sharper, i.e. more difficult, turns.

from image processing have a large impact on robot behavior. The HTC Nexus One
phone we used only has a 45 degree viewing angle so it can be difficult for the camera
input to see a severe upcomming turn. The vertical angle at which the phone is placed
is also important. Lighting changes significantly depending on the angle of the phone
as does the distance in front of the robot the camera can see. These factors can affect
both the ability to successfully match road models and the ability to perceive changes
to the path. We chose to angle the phone forward at a 30 degree angle which allows
the camera to see approximately six feet in front of it and places the “safe road” box 10
inches in front of the robot. We suspect that a greater field of vision would allow the
robot to better perceive larger degree corners and could lead to better performance, but
further testing with a fish-eye lense is needed.

Another limitation to the current approach is the manuverability of the robotic plat-
form. The tested Rover 5 platform makes sharp, angled turns that work well for angled
corners, but are less desirable for curved tracks. Another platform that was used in
preliminary tests had 4 wheels and therefore made more rounded turns.3 These turns,
and a faster operating speed, allowed this platform to quickly traverse test tracks, but
its limited turning radius made it very difficult to keep the “safe road” box on the track.
Keeping the box within the bounds of the track allowed operation under the assmption
that whatever is directly in front of the robot is the desired road type. This works well
for detecting safe road regions, but it increases the importance of careful training. If the
box leaves the desired road surface, it can have a debilitating negative impact on the
performance of the image processing. It was for this reason we chose to use the more
precise turning Rover 5 as our robotic platform for this research. Because it is slower
and has a smaller turning radius, the Rover 5 makes it easier to keep the “safe road”
box on the track and therefore simplifies training.

3http://www.nitrorcx.com/51c871-maxstone16-green-24ghz.html

12

References

[1] Atta-ul-Qayyum Arif, Dimitar G Nedev, and Evert Haasdijk. Controlling evalua-
tion duration in on-line, on-board evolutionary robotics. In Evolving and Adaptive
Intelligent Systems (EAIS), 2013 IEEE Conference on, pages 84–90. IEEE, 2013.

[2] Nicolas Bredeche, Evert Haasdijk, and AE Eiben. On-line, on-board evolution of
robot controllers. In Artifical Evolution, pages 110–121. Springer, 2010.

[3] Rodney A Brooks. Artifical life and real robots. In Toward a practice of autonomous
systems: Proc. of the 1st Europ. Conf. on Artificial Life, page 3, 1992.

[4] Genci Capi and Hideki Toda. Evolution of neural controllers for robot navigation
in human environments. Journal of Computer Science, 6(8):837, 2010.

[5] Jeff Clune, Benjamin E Beckmann, Charles Ofria, and Robert T Pennock. Evolving
coordinated quadruped gaits with the hyperneat generative encoding. In Evolution-
ary Computation, 2009. CEC’09. IEEE Congress on, pages 2764–2771. IEEE, 2009.

[6] AE Eiben, Evert Haasdijk, Nicolas Bredeche, et al. Embodied, on-line, on-board
evolution for autonomous robotics. Symbiotic Multi-Robot Organisms: Reliability,
Adaptability, Evolution., 7:361–382, 2010.

[7] Evert Haasdijk, Arif Atta-ul Qayyum, and Agoston Endre Eiben. Racing to improve
on-line, on-board evolutionary robotics. In Proceedings of the 13th annual conference
on Genetic and evolutionary computation, pages 187–194. ACM, 2011.

[8] Robert-Jan Huijsman, Evert Haasdijk, and AE Eiben. An on-line on-board dis-
tributed algorithm for evolutionary robotics. In Artificial Evolution, pages 73–84.
Springer, 2012.

[9] Giorgos Karafotias, Evert Haasdijk, Ágoston E Eiben, Evert Haasdijk, A Eiben,
A Winfield, Evert Haasdijk, A Rusu, A Eiben, A Eiben, et al. An algorithm for
distributed on-line, on-board evolutionary robotics. In GECCO, pages 171–178,
2011.

[10] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. Crossing the reality
gap in evolutionary robotics by promoting transferable controllers. In Proceedings
of the 12th annual conference on Genetic and evolutionary computation, pages 119–
126. ACM, 2010.

[11] Jean-Marc Montanier and Nicolas Bredeche. Embedded evolutionary robotics:
The (1+ 1)-restart-online adaptation algorithm. In New Horizons in Evolution-
ary Robotics, pages 155–169. Springer, 2011.

[12] Fernando Silva, Paulo Urbano, Sancho Oliveira, and Anders Lyhne Christensen.
odneat: An algorithm for distributed online, onboard evolution of robot behaviours.
In Artificial Life, volume 13, pages 251–258, 2012.

13

[13] Ceryen Tan, Tsai Hong, Tommy Chang, and Michael Shneier. Color model-based
real-time learning for road following. In Intelligent Transportation Systems Confer-
ence, 2006. ITSC’06. IEEE, pages 939–944. IEEE, 2006.

[14] Richard A Watson, Sevan G Ficici, and Jordan B Pollack. Embodied evolution:
Distributing an evolutionary algorithm in a population of robots. Robotics and
Autonomous Systems, 39(1):1–18, 2002.

14

