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Clicker Training: Reinforcement learning for a mobile CotsBot
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We created two methods for on-line learning through clicker training in autonomous robots built using Commodity-Off-The-
Shelf design principles (COTSBots). The first strategy uses a look-up table to map current input information to a set of behavior
probabilities while the second method uses a learned grammar to represent the controller as a state machine. Both controllers
can be trained to solve problems the same way a dog may be trained. A robot’s trainer gives positive or negative reinforcements
during a training phase. This feedback modifies available behavior probabilities. Both strategies were tested using a benchmark
problem of going to a target object and returning to the starting position. We compare the impact of multiple rounds of training on
performance starting from a single starting position and multiple starting positions. Testing showed clicker training was an effective
control strategy using both the table and the grammar. Results showed that the number of rounds of training significantly impacted
the performance of the grammar method but not the table.
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I. INTRODUCTION

Intelligent, autonomous, robotic agents are desirable be-
cause of their potential application to a wide variety of
fields, such as natural disaster response and exploration of
extraterrestrial landscapes [1], [2]. For complex, and dynamic
applications such as these, it is difficult to design effective
controllers before deployment, and it is therefore desirable for
a controller to learn while it is deployed.

Robotic learning can take several forms including: super-
vised, unsupervised, and reinforcement.

Supervised learning strategies involve telling an agent what
it should do given a set of inputs and then using that informa-
tion to generalize behaviors for an inputs. An example of this
type of learning is using back propagation to train a neural
network.

Unsupervised learning attempts to cluster unlabeled data
without any feedback. Common approaches include hidden
Markov models and principle component analysis.

Reinforcement learning strategies include guiding an agent
towards desired behaviors and then reinforcing those behaviors
in some way to influence their chances of happening in the
future.

We present two implementations of clicker training, which
is a form of reinforcement learning, as a means of training
a mobile, autonomous robot. The first method uses a look-
up table, and the second use a learned grammar. Clicker
training is the approach commonly used to train pets, but it
can be easily expanded to the training of any agent; including
robots. In this method, a robot learns a behavior through trial-
and-error interactions with a trainer [3]. The results of these
interactions are reinforced in an effort to increase or decrease
their probability of occurring in the future based on whether
a positive or negative reinforcement was received. Training in
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Fig. 1. Robot designed and built at the University of Idaho following
Commodity Off The Shelf (COTS) design principles. The robot consists of
three basic components: a smartphone, an Arduino microcontrollers, and a
mobile robot platform. A full description of the robotic platform is given in
Section III

this fashion leads to robots that fall within the human acting
category of the Artificial Intelligence description in [4].

The controllers were implemented on a mobile robot built
using Commodity-Off-The-Shelf design principles (COTS-
Bots). Reinforcements were given to the robot by clicking
either a positive or negative reinforcement button on a con-
nected smartphone. The robot starts by taking random actions
and then pausing for one second to allow the trainer to
provide reinforcement. If reinforcement is given, the controller
increases or decreases the probability of the previous action
occurring in the future based on whether positive or negative
reinforcement was received. After training, the robots could
operate autonomously , where no further reinforcements are
given. Testing showed that clicker training, using either control
method, was an effective way of training a robot to complete
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a task, and training multiple times has a significant impact on
the performance of the grammar method.

This research expands on previous applications of rein-
forcement learning to robotics in an effort to show that a
simple training system can be developed that allows a robotics
layman to train robots for a particular task within the trainer’s
own field of expertise. Furthermore, we show that the internal
representation of the training system does not matter by testing
two different approaches for internal representation.

This article is divided as follows: Section II gives a
brief overview of robotic learning and reinforcement training.
Section III presents a full description of the experimental
procedure including hardware specifications, the problem to
be solved, the testing arena, and test configuration. Section
IV presents a description of the table and grammar methods
for implementing reinforcement learning. Section V presents
the testing data and provides a detailed analysis of the results.
Finally, section VI presents our conclusions followed by some
proposals for future work.

II. BACKGROUND

Because of the complexity of real world environments, it’s
crucial that autonomous robots possess the ability to learn
new behaviors from information gained during operation. This
allows them to perform better than robots whose controllers
are developed ahead of time [5], [6]. This learning can
take several forms and includes learning through evolution
(Evolutionary Robotics) [7], [8], learning by imitation [9],
[10], and reinforcement learning [11], [12].

Intelligent, autonomous, robotic agents are desirable be-
cause of their potential to operate in variety of dangerous
environemnts, such as natural disaster areas and extraterrestrial
landscapes [1], [2]. These environments can be widely varied,
complex, and dynamic. Because of this, creating controllers
ahead of time to operate in one of these environments is
very difficult and moving a robot to a new environment often
requires a new controller to be developed. This development
requires both time and money which may not be readily
available in situtaions such as disaster response. To avoid
the difficulties involved with creating pre-defined controllers,
robotic controllers that facilitate learning can be developed.
The ability to learn from new environments and situations
allows a robot to adapt to the widely varied environments
and tasks in which they may be used. This adaptation allows
the robot to outperform pre-defined controllers because it can
modify its behaviors during operation to perform optimally in
the current environment or task.

Reinforcement learning techniques are commonly used to
train animals [13], [14], [15] and can be applied to the field of
mobile robotics as a means of simplifying the robotic training
process. A common approach to animal training is to have the
animal achieve the desired behavior first and then associate
that behavior with a command. Because a trainer cannot
explain to the animal what to do, the animal needs to discover
the behavior by itself [12]. If a desired behavior rarely, or
never, occurs naturally the trainer must guide the animal into
discovering the behavior. Once the animal performs a behavior,

the trainer can associate that behavior with a command and
give a reinforcement For example, when training a dog to
roll over, the trainer may first reward a dog for sitting, then
for laying down, and finally for rolling over. This method is
known as shaping, and these same principles can be applied
to robotic training.

In [12], shaping was used to implement clicker training on
the Sony AIBO robot. In clicker training, a device capable of
producing positive and/or negative reinforcement signals (the
clicker) is used to reinforce actions taken by the trained entity.
Behaviors were represented internally using hierarchical trees
where their roots represent the general goals and they can tell
only if the task was done successfully, and not how it was
done.

In this paper, we present two methods for on-line learning
using clicker training as a means to train autonomous robots.
By combining a simple training method, and cheap, easy to
build robots, we’ve developed a research tool which requires
no expert knowledge of robotics to use.

III. EXPERIMENT DESCRIPTION

A. Test Problem

To demonstrate that a simple training method can be used
to guide a robot towards the completion of a task, the test
problem used was ‘Search, Go to, and Return,’ because it is
a fundamental benchmark problem in robotics. The robot was
tested on its ability to find a target object, navigate to that
object, and then return to its starting location. Both the target
object and starting location were represented as colored balls
of known size (see Section III-C for details). The effect of
multiple rounds of training and multiple training positions
on performance was tested by training the robot multiple
times from the same starting position and from different
starting positions. Testing from each position was done for
both controller types so the performance of each controller
method could be compared.

It’s worth noting that the grammar method’s ability to rec-
ognize states was tested using a pre-defined grammar to guide
a robot out to a target object, have the robot drive around the
object, and then return to the starting location. This is a task
that is very dependent upon state information and could not
be solved without some form of state differentiation of inputs.
The pre-defined grammar was able to successfully complete
the task, but it was determined that the table controller could
not solve this task, so this test problem was not used.

B. Robot Platform

These experiments utilized a physical robot designed and
built at the University of Idaho following Commodity Off The
Shelf (COTS) design principles. The robot consists of three
basic components:

1) An Android smart phone. For these experiments a HTC
Desire HD running Android 2.3.3 was used. This phone has
a 1GHz Qualcomm Snapdragon processor, with 768 MB of
RAM, a Qualcomm Adreno 205 GPU, and a 480 by 800 pixel
camera. The camera is the only input sensor used for this
experiment.
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2) An Arduino based microcontroller. The microcontroller
possesses Bluetooth capabilities which handles communica-
tion between the smart phone and the robot body. For these
experiments the DFRomeo microcontroller from DFRobot was
used.1 The microcontroller is only used to receive commands
via Bluetooth from the smart phone and to activate the
motors on the robotic platform, therefore, the computational
characteristics of the microcontroller are not a concern.

3) A mobile robot platform. For these experiments the Rover
5 Tank chasis was used.2 This is a small (22.5cm by 24.5cm),
tracked, mobile robot platform. It can run continuously for
several hours while carrying the microcontroller and smart
phone.

The robot’s decisions are made by an application running
on the phone which receives input from the camera, performs
vision processing, chooses an action using one of the two
proposed control methods, and then sends the corresponding
signal to the microcontroller. Reinforcement is sent from the
trainer using a ’clicker’ phone and is received by the smart-
phone on the robot. These reinforcements are then handled by
the controlling application.

OpenCV 2.3.1 is used to capture and process sequential
images from the phone’s camera. The algorithm searches for
the closest round object of a specified color, and can find
objects of different colors simultaneously. If an object is found,
it is assumed to be a colored ball. A determination is made
on whether the detected object is near or far from the camera
using a threshold value of 0.6 meters and knowledge of the
size of the target and start balls. If multiple objects of the same
specified color are detected, only the closest one is considered.
Each frame is processed, and the information is stored in a
four integer array. The first two values store input information
corresponding to the start object, and the last two represent
inputs corresponding to the target object. This input array is
then handled uniquely by each control.

C. Testing Arena

The experiments were performed in a 4.7 by 2.8 meter room.
The start and target locations were represented by 3” diameter
red and green balls respectively. The balls were placed 1.1
meters away from the north and south walls, and were centered
1.4 meters away from each of the west and east walls (see
Fig. 2). Each starting position was 30 cm away from the start
ball so the robot would have room to move when placed in
positions 2, 3, and 4 (see Figure 3). Figure 2 shows the robot
in starting position 1, and Figure 3 shows the position of each
starting location.

D. Experimental Design

The experimental method used to test the controllers con-
sisted of two phases: training and testing. Both are described
in this section.

1http://www.dfrobot.com/index.php?route=product/product&filter name=
Romeo&product id=56#.UltL4BaHrzI

2http://www.dfrobot.com/index.php?route=product/product&path=37
111&product id=386#.UltPFBaHrzI

Fig. 2. Experiment arena with a robot positioned near the starting location
(red ball) in position 1 facing the west wall which was the standard orientation
for each starting location. The robot and balls are not drawn to scale.

Fig. 3. Positions of experiment starting locations. The robot was trained
starting from each of these positions. The robot was always placed at the
starting position facing West.

1) Training Phase
During the training phase, the robot was trained by a human

operator to solve the test problem. Two different sets of
training (A and B) were performed, each consisting of four
rounds of training. Set A was designed to test the effect of
multiple rounds of training from the same starting location,
while Set B was designed to test the effect of training from
multiple starting locations. A round of training included the
following steps:

1) Place the robot at a starting position facing West
2) If it’s not the first round of training for a training set,

load the previously generated rules as the starting rules
for the current round of training

3) Start the robot in ‘Training Mode’
4) The robot receives input, takes an action, and pauses for

one second to allow time for accurate reinforcement
5) The robot’s actions are reinforced to guide it through
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TABLE I
ROUNDS OF TRAINING AND WHICH POSITIONS WERE TRAINED. FOR

EXAMPLE, TRAINING 4 WAS TRAINED FOUR TIMES FROM POSITION 1.
TRAINING 7 WAS TRAINED ONCE FROM POSITIONS 1, 2, 3, AND 4. THE
GENERATED RULES FROM TRAINING ARE CUMULATIVE MEANING THAT

THE OUTPUT RULE SET FROM ONE ROUND OF TRAINING IS USED AS THE
STARTING RULE SET FOR THE NEXT ROUND OF TRAINING (EX. TRAINING
5 USED THE OUTPUT RULES FROM TRAINING 1 WHICH STARTED WITH AN

EMPTY RULE SET).

Round Locations
Trained

Training1 1

Set A Training2 1 1

Training3 1 1 1

Training4 1 1 1 1

Training1 1

Set B Training5 1 2

Training6 1 2 3

Training7 1 2 3 4

the test task
6) Stop the robot after it has completed the task, or five

minutes of training have elapsed
7) Save the generated rules to an output file
Table I describes the training data sets including which

positions were trained for each round of training.
The reinforcement process is critical for training. If an

action is judged as good or bad by the trainer, a reinforcement
can be given using the ‘clicker’ smartphone. When a rein-
forcement signal is received by the robot, the previous action
is reinforced. To ensure the user has a chance to reinforce the
correct action, the robot pauses for one second after it makes
an action. If the robot operates without any delay, the training
process is much less accurate. The decision to pause increases
the time to complete an action, but the overall training time
is decreased through increased reinforcement accuracy.

For this experiment, three different people trained the robot.
Each trainer performed both sets of training using both of
the control methods. This was done to avoid bias caused by
variations in who was training the robot, and what method
they were using.

2) Testing Phase
To test the rules generated during training, saved output

files containing the rules generated from each round of training
were used. By loading a rule file before autonomous operation
started, the robot would operate using that set of rule. Each
of the 7 training files were loaded, and run 3 times from each
of the 4 starting locations for a total of 12 tests per training.
A test consisted of placing the bot at the starting location
facing west, and clicking the start button on the clicker phone
allowing the robot to run autonomously.

A test was a success if the robot was able to move to within
the near threshold (0.6 meters) of the target location and return
to within the near threshold of the start location. If during
this process the robot ran into a surrounding wall, ran over
either the start or target ball, or exceeded 5 minutes of run
time the trial was considered a failure. The robot started each

test facing West so each trial had the same initial start state.
Recorded data included the time from the start to target, time
from target to start, the number of times the bot bumped one
of the balls, the distance a ball moved if it was bumped, and
the overall success or failure of the run. The complete data
set consisted of 3 trainers, each using both of the 2 controller
methods, training each method 7 times, and testing each round
of training 12 times for a total of 504 data points.

• 3 trainers
• 2 controller methods
• 7 rounds of training
• 12 trials per round of training
• 504 total data points

IV. CONTROL METHODS

To show that clicker training is effective regardless of
internal representation, we tested two different methods of
representing the internal logic of the robot: lookup tables and
grammars. The lookup table has the advantage of simplicity
in concept and implementation whereas the grammar approach
has the advantage of being able to differentiate similar inputs
based upon state information, and therefore can chain together
complex actions with limited inputs. While both methods
allow robotic training through action reinforcements, the meth-
ods do operate much differently from one another.

A. Table

The table implementation maintains a table mapping dif-
ferent input states with their corresponding actions to be
taken. The training process is started with an empty table, and
through the training process it is filled with mappings from
input states to actions which are then chosen probabilistically.
An entry in the table is represented by a four integer input
array and a three integer output array organized in the form:

• Input
1) START DIRECTION
2) START DISTANCE
3) TARGET DIRECTION
4) TARGET DISTANCE

• Output
1) OUTPUT LEFT
2) OUTPUT CENTER
3) OUTPUT RIGHT

Direction and distance are represented as integers with the
following integer to input mappings:

1) DIRECTION
• 0 - UNSEEN
• 1 - LEFT
• 2 - CENTER
• 3 - RIGHT

2) DISTANCE
• 0 - NEAR
• 1 - FAR

Direction and distance input is received for both the target
and start locations. The direction refers to what third of the
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screen the object is. If the object in question is not visible to
the camera it is considered UNSEEN and an input value of 0
is used. Distance is measured as either NEAR or FAR using
a value threshold of 0.6 meters to seperate the two; when the
robot sees a vall and determines it’s closer than 0.6 meters to
that object the input received is NEAR, otherwise it’s FAR.

The three output values represent weighted probabilities
of an action (left, forward, right) being taken by the robot.
These three action values are initialized with a default value
of 5 so each has an equal initial chance of occuring. The
values are incremented or decremented based upon positive
or negative reinforcements during the training process. When
positive reinforcement is received, the previous action’s value
is incremented by one and all other action values are decre-
mented by one with a min value of 0 and a max value of 10.
If a negative reinforcement occurs, the last action’s value is
decremented by 2 and the other values are not changed. To
choose which action to take a proportional selection is used
where each action’s chance of being chosen is its action value
divided by the sum of the three action values. If the three
values are 2, 5, and 2, forward would have a 55% (5/9) chance
of being the chosen action. The following are example rules
in the table:

1) < 0, 0, 0, 0 >< 8, 2, 2 >
2) < 2, 1, 0, 0 >< 0, 10, 0 >

The first entry tells the robot to turn left when neither the
target or start objects are seen, but the robot thinks it is close
to both of them. The second rule says when the start object is
in the center of the screen and far away, and the target object
cannot be seen but is close, to drive forward towards the start
object.

When running autonomously, the robot matches its current
state with the corresponding state in the table and then
determines the action to be made using the process described
previously. The chosen action is then sent to, and carried out
by, the robot.

B. Grammar

The grammar models the robotic controller as a state ma-
chine defined by a learned, regular grammar using a predefined
set of input tokens. This provides the controller with the ability
to perform sequential reasoning, and allows different behaviors
to be chosen for identical inputs based upon state information.
The grammar defines a state machine that can be modeled as a
graph with the non-terminals (NT) mapped to the vertices, and
the rules representing particular edges on the graph. Figure
4 shows an example of a state machine generated by the
grammar that is able to solve the test problem.

Grammar rules take the form of:
• β ← ω, η : ρ

where:
• β: Non-terminal to push onto the stack
• ω: Input string
• η: Current non-terminal
• ρ: Actions probabilities (Left, Forward, Right, Stop)
The input string and current non-terminal are used to match

a rule. The matching rule’s action probabilities are used to

Fig. 4. State machine for example grammar. Vertices/states correspond to
non-terminals and edges correspond to inputs. Edge labels use abbreviated
forms of the vocabulary defined in Table II. For example, the input CFT
refers to “CENTER FAR TARGET” and E is “EMPTY.”

TABLE II
GRAMMAR VOCABULARY

Word Description

LEFT Object is on the left 3rd of the camera’s view

CENTER Object is on the center 3rd of the camera’s view

RIGHT Object is on the right 3rd of the camera’s view

NEAR Object is less than 0.6 meters away from the robot

FAR Object is more than 0.6 meters away from the robot

START The start object (red ball) is detected on screen

TARGET The target object (green ball) is detected on screen

EMPTY No object is detected on screen

NT# Non-terminal # where # is some unique number from 0 to N (ex. NT0)

determine the action to take, and the specified non-terminal
is pushed onto the stack to represent the current state. A
generated rule looks like:

1) NT1 ←EMPTY NT0 : .3 .3 .3 .1
The grammar operates using a predefined set of input

tokens (see Table II). The input array generated through image
processing is further processed by the grammar to generate an
input string using the tokens available to the grammar. This
is different from the table which uses the input array directly.
The grammar maps the array values to the proper tokens to
build valid input strings. Input strings take one of two forms:

1) <“EMPTY ”>
2) < DIRECTION,DISTANCE,OBJECT >

An EMPTY input means their are no recognizable objects in
the screen, and if an object is detected, the input describes that
object using the following mapping.

1) DIRECTION
• LEFT
• CENTER
• RIGHT

2) DISTANCE
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• NEAR
• FAR

3) OBJECT
• START
• TARGET

The direction indicates which third of the screen an object
is located in. The distance indicates whether the object is
greater than 0.6 meters away, and the OBJECT token indi-
cates whether the detected object is the START or TARGET
location. Example inputs include “CENTER FAR TARGET”,
and “RIGHT NEAR START”. If both a TARGET and START
object are in the field of view, the TARGET input is used.
This does create a bias towards the TARGET object when
both are seen. In future work a different way of handling input
containing both objects could be used to test the effect of the
bias towards the TARGET object.

Each rule in the grammar has four action probabilities
representing each of the four valid actions for the controller
to choose: left, forward, right, stop. Each action has its own
probability of being chosen, but the four probabilities added
together always equal 1.0. Initially the left, forward, and right
probabilities are set to 0.3 and the stop probability is 0.1.

A simple grammar may only have a few rules with a small
number of non-terminals. This simple grammar is sufficient to
turn left until the TARGET is in the center of the screen and
then drive towards it.

1) NT0 ←EMPTY NT0 : .5 .2 .2 .1
2) NT1 ←CENTER FAR TARGET NT0 : .1 .7 .1 .1
3) NT1 ←CENTER NEAR TARGET NT0 : .15 .1 .15 .6
4) NT1 ←CENTER NEAR TARGET NT1 : .1 .1 .1 .7
5) NT1 ←CENTER FAR TARGET NT1 : .1 .5 .1 .3
6) NT1 ←EMPTY NT1 : .75 .1 .1 .05

The behaviors generated by these rules can be summarized as
follows:

1) When nothing is in the screen, turn left
2) If nothing has previously been seen, and the target is far

away and in the center, change state to NT1 and drive
forward

3) If nothing has previously been seen, and the ball is near
and in the center, change state to NT1 and stop

4) If the target has been seen, and the target is near and in
the center, stay in state NT1 and stop

5) If the target has been seen, and the target is far away
and in the center, stay in state NT1 and drive forward

6) If the target has been seen, and nothing is on the screen,
turn left

This summary assumes the action with the greatest probability
is chosen each time, but because actions are chosen probabilis-
tically this isn’t always the case. For example, when nothing
has been seen (rule 1) the robot only turns left 50% of the
time.

Operation during training consists of four main tasks:
1) Input matching
2) Action selection
3) Non-terminal and rule generation
4) Reinforcement

Input matching Input strings are received and pushed onto
the stack. The top of the stack is then matched against existing
grammar rules. If the input string and the current non-terminal
match an existing rule, they are popped from the stack, a new
non-terminal is pushed onto the stack, and an action is selected
using the action probabilities present in the matching rule. If
no matching rule exists, a new rule and possibly a new non-
terminal will be generated.

Action selection The actions performed by the robot
are chosen probabilistically using a roulette wheel selection.
Initially, because all action probabilities start with equal values
the chosen behaviors are random. As reinforcement modifies
action probabilities certain behaviors will being to occur more
often. By using a probabilistic selection instead of just picking
the action with the highest probability the robot maintains the
ability to break out of an endless loop of repeated behaviors
by picking an action that is not the most likely to occur. This
ability is desired when an action has been positively reinforced
when it shouldn’t have been.

Non-terminal and Rule generation If no existing rule
matches the current input and non-terminal a new rule must
be generated. An important factor in generating a new rule is
deciding what non-terminal to push onto the stack for the new
rule. This effectively determines how a robot reasons about the
order in which parts of the task are completed. When a new
rule is generated it can use the current non-terminal, it may
use an existing non-terminal different from the current one, or
it may generate a new non-terminal. The current non-terminal
is not used in the following situations:

• The current non-terminal is the starting non-terminal
• Large change between current and previous input. (ex.

FAR to NEAR, or TARGET to START)
• A random number is generated greater than (.25 * (#

of matching input tokens between current and previous
input))

If the current non-terimanl is not selected, a list of rules with
matching input but different non-terminals is generated. If the
non-terminals in these rules have a larger ID (ex. NT3 >
NT1) then they are added to a list of non-terminals that can be
chosen for the new rule. If there are no existing non-terminals
that fit this criteria a new non-terminal is generated with an
ID one greater than the previously created non-terminal, and
it is added to the list of possible non-terminals for the new
rule. From the list of possible non-termainsl, one is randomly
selected to be the non-terminal for the new rule. If the chosen
non-terminal is a newly generated one, it is added to the list
of non-terminals available for future use. This process allows
the robot to expand its known state space through exploration
of previously unkown states and environments.

Reinforcement
To train the robot to perform the test task, a reinforcement

can be issued after an action is taken. If the previous action
was a desired one, a positive reinforcement can be given
which increases the probability of that action occuring in
the future. Likewise, if the previous action is not desired, a
negative input will decrease its chance of occuring. When a
positive reinforcement is received for an action the other three
probabilities are halved and the probability of the reinforced
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action is increased by the sum of the new probabilities of
the other actions (see Algorithm 1). A negative reinforcement
on an actions causes that probability to be havled, and its
remaining half is added evenly between the other three actions.

During testing operation reinforcements are not given, so
there is no further reinforcement training. If unfamiliar inputs
are received the bot again generates a new rule. If the inputs
don’t match any in the recent history, the controller attempts to
match them to any rule in the rule-set in order to once again
return to known state space. This approach may not be the
best one, and an alternative that was suggested was to simply
choose a random non-terminal to push onto the stack if the
inputs do not match any rule in the rule set. Further work
is needed to test different methods of rule generation during
testing.

As the robot operates, the grammar may generate many new
rules and non-terminals as it learns how to handle new inputs.
This grammar describes the DFA shown in Figure 4.

• NT1 ← EMPTY NT0 : .1 .1 .7 .1
• NT1 ← EMPTY NT1 : .1 .1 .7 .1
• NT1 ← RIGHT FAR TARGET NT1 : .1 .1 .7 .1
• NT2 ← CENTER FAR TARGET NT1 : .3 .3 .3 .1
• NT2 ← CENTER FAR TARGET NT2 : .1 .7 .1 .1
• NT3 ← CENTER NEAR TARGET NT2 : .1 .1 .7 .1
• NT3 ← LEFT NEAR TARGET NT3 : .1 .1 .7 .1
• NT3 ← EMPTY NT3 : .1 .1 .7 .1
• NT4 ← RIGHT FAR START NT3 : .3 .3 .3 .1
• NT4 ← RIGHT FAR START NT4 : .1 .7 .1 .1
• NT3 ← EMPTY NT4 : .3 .3 .3 .1
• NT5 ← RIGHT NEAR START NT4 : .3 .3 .3 .1

V. RESULTS

Tables III and IV, and Figures 5, 6, 9, and 10 show the
successes of each round of training for both the table and the
grammar respectively. The data shows that after one round
of training for each trainer the table performed better than
the grammar (see Figures 7 and 8). We used a χ2 test to
determine the dependency of success on training. The test used
the number of successes after being trained one time vs. being
trained four times. The results from Table IV showed that
increased training iterations were significant to the success of
the grammar(χ2 = 8.41, P ≤ 0.01). The results from Table
III showed that increased training was not significant for the
table(χ2 = 0.96, P ≥ 0.35).

The effect of multiple rounds of training on performance
can be seen in Figures 7 and 8. They show that multiple
rounds of training for the grammar have a significant impact
on performance while multiple rounds of training for the
table don’t significantly increase performance above what is
achieved by a single training. From this information we deduce
that the data shows that the grammar is more dependent on
training than the table.

Figures 5, 6, 9, and 10 show that most successful tests for
either method came from positions 1 and 2. Position 3 was
the most difficult testing position, and had the least number
of successful trials.

We performed the same tests to determine if training from
multiple positions leads to a greater probability of success.

Algorithm 1 Grammar Controller Description
Pr = Probability of a reinforced behavior
Pn = Probability of a non-reinforced behavior
Push NT0 onto the stack
if Top of stack matches rule then

Pop matching tokens off stack
Push NT from matching rule onto stack
Choose action based on probabilities
if Reinforcement was received then

if Reinforcement was positive then
val = 0
for Each non-reinforced behavior do
Pn = Pn/2
val += Pn

end for
Pb = Pb + val

else
Pb = Pb/2
for Each non-reinforced behavior do
Pn = Pn + Pb/3

end for
end if

end if
else

if Top of stack is a NT then
Get new visual inputs

else
useNewNT = useNewNonTerminal()
if useNewNT = True then

if Rule in history similar to current visual input then
Generate rule that pushes NT of the similar rule

else
if In Training Mode then

Generate new NT
Generate rule pushing the new NT

else if In Test Mode then
if Existing rule similar to current visual input
then

Generate rule that pushes NT of the matching
rule

else
Pick random NT

end if
end if

end if
else

Generate rule to match inputs
Push same NT onto stack

end if
Add new rule to rule set

end if
end if
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TABLE III
TABLE TRAINING RESULTS

Position1 Position2 Position3 Position4 Total out of 36

Set A

Training1 9 9 0 3 21
Training2 9 9 0 2 20
Training3 8 9 0 5 22
Training4 8 9 2 6 25

Set B

Training1 9 9 0 3 21
Training5 9 9 0 2 20
Training6 8 6 1 6 21
Training7 9 7 0 9 25

TABLE IV
GRAMMAR TRAINING RESULTS

Position1 Position2 Position3 Position4 Total out of 36

Set A

Training1 3 4 0 0 7
Training2 8 6 1 2 17
Training3 8 6 0 1 15
Training4 9 8 1 2 20

Set B

Training1 3 4 0 0 7
Training5 4 4 0 1 9
Training6 6 6 2 1 15
Training7 6 6 1 3 16

Fig. 5. Results of testing data set A from all positions using the table method.
This graph shows the fewest number of successes came from starting location
3. Successes from locations 1 and 2 were consistent regardless of the number
of rounds of training.

To do this we performed the χ2 test again, but this time we
compared the success of Training4 to the success of Training7.
This compared the performance of training 4 times from a
single position to training 1 time from 4 different positions.
The test for the table method showed that change in position
was not significant(χ2 = 0.06, P ≥ 0.8) (see Figure 11).
The results for the grammar method showed that change in
position was also not significant(χ2 = 0.88, P ≥ 0.35) (see
Figure 12), although it still received more gain from repeated
training than the table.

To determine which controller method performed best,
another χ2 test was used, this time comparing whether success
was dependent on the method used. The results showed that
the type of method used was not significant (χ2 = 1.46,
0.25 < P < 0.1).

Fig. 6. Results of testing data set A from all positions using the grammar
method. This graph shows few successes came from starting locations 3 and
4. Successes from all locations increased between the first and last rounds of
training.

Fig. 7. Results of testing data set A from position 1 using the table method.
This graph shows the number of rounds of training does not have a significant
effect on the performance of the table controller.

Fig. 8. Results of testing data set A from position 1 using the grammar
method. This graph shows the number of rounds of training does have a
significant effect on the performance of the grammar controller.

VI. CONCLUSION

Using a clicker training reinforcement learning strategy, as
used on animals, it is possible to create a learning system for
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Fig. 9. Results of testing data set B from all positions using the table method.
Training from multiple starting locations didn’t have any significant effect on
the performance of the table. The data shows position 3 was the most difficult
starting position for the table as it only succeeded from that postion one time.

Fig. 10. Results of testing data set B from all positions using the grammar
method. The data shows performance generally increases by training from
multilpe starting locations. The grammar controller showed greater success
from position 3 than did the table method. This could suggest the grammar
could potentially be more effective in training the robot to handle more
complex tasks.

mobile robotics which enables the training of a robot by a per-
son with little knowledge of the robotic software or hardware.
To show the effectiveness of clicker training, regardless of
internal representation, we presented two different approaches
to internal control of a robot, a classical table and a novel
grammar.

Though testing the robot without any training was not done,
we feel confident that neither the table nor grammar would
have had any realistic chance of succeeding in the task without
a single round of training. Though the χ2 analysis showed only
the grammar was dependent on training, both methods needed
at least 1 training to be successful at all.

Starting from position 3 (see Figure 3), neither approach was
able to consistently succeed in the task. Our data showed that
the least amount of successful trials came from this position.
We suspect this is due to several reasons. The table lacked
state memory, and thus would have difficulty moving around

Fig. 11. Results of testing data set B from position 1 using the table method.
This graph shows that training from multiple positions does not have a
significant effect on the performance of the table controller.

Fig. 12. Results of testing data set B from position 1 using the grammar
method. This graph shows that training from multiple positions improved
performance during this experiment, but the increases weren’t significant.

the start object to get to the target object. The grammar has the
ability to sequence tasks, so could potentially learn to move
around an object in a particular state. We believe this would
take many rounds of training and it was never tested.

The table benefited the most from the first round of
training, and thus had small gains from continued training.
The grammar controller showed more significant gains from
continued training than that of the table method. In addition
to performance gains from additional training, the grammar
was more successful during testing from some of the more
challenging starting locations suggesting it may be a better
option for more complicated tasks; further experimentation
will be required to show this. On the chosen task, training
from different starting positions had little effect on the overall
success of the robot, and may have even been detrimental due
to the chance of negatively modifying an established rule.

We have demonstrated that clicker training shows promise
as a robotic training technique that allows specialists in a
particular field to train a robot without needing expert robotic
knowledge. Clicker training can be implemented using differ-
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ent internal representations which can allow on-line learning
on low cost, but powerful, mobile robots. This could lead to
further adoption of robots as tools for research and as workers
in a wide variety of applications.
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