Computer Architecture

Chapter 3 - Instruction-Level Parallelism

Software Techniques - Code Scheduling

The straightforward RISC-V code, not scheduled for the pipeline, looks like

this:

Loop: fld f0,0(x1) //f0=array element
fadd:d: T4.70:12 //add scalar in f2
fsd f4,0(x1) //store result
addi Xl axXli—=08 //decrement pointer

//8 bytes (per DW)
bne x1,x2,Loop //branch x1#x2

Without any scheduling, the loop will execute as follows, taking nine cycles:

Clock cycle issued

fsd f4,0(x1)
addi x1,x1,-8
bne Xl Xz EOoop

Loops - fld f0,0(x1) 1
stall 2
fadd.d f4,f0,f2 3
stall 4
stall 5

6
7
8

We can schedule the loop to obtain only two stalls and reduce the time to seven
cycles:

Loop: fld f0,0(x1)
addi x1,x1,-8
fadd.d f4,f0,f2

stall

stall

fsd f4,8(x1)
bne x1,x2,Loop

The stalls after fadd . d are for use by the fsd, and repositioning the add i pre-
vents the stall after the f1d.

Loop Unrolling

e Unrolled 4 times

Here is the result after merging the addi instructions and dropping the unnec-

essary Dne operations that are duplicated during unrolling. Note that X2 must
now be set so that Regs[x2]+32 is the starting address of the last four
elements.

Loop: flc f0,0(x1)
fadd.d f4,f0,f2
fsc f4,0(x1) //drop addi & bne
flc fo,—8(x1)
fadd.d f8,f6,f2
fsd f8,-8(x1) //drop addi & bne
flc fO,-16(x1)
fadd.d f12,f0,f2
fsc fl12,-16(x1) //drop addi & bne
flc fl14,-24(x1)
fadd.d f16,f14,f2
fsc fl6,—-24(x1)
add1 x1,x1,-32

bne x1,x2,Loop

Unrolled and Scheduled

Example Show the unrolled loop in the previous example after it has been scheduled for the
pipeline with the latencies in Figure 3.2,

Loop: fld fO,0(x1)
f1d f6,—-8(x1)
f1d fO.adiﬁzQ;L\\\\\\\\\
f1d f14,-24(x1)
fadd.d f4,f0,f2 f10

fadd.d f8,f6,f2
fadd.d fl12,f0,f2
fadd.d fle,fl4,f2

fsd f4,0(x1) -16
fsd f8,—-8(x1)

Fsd F12,160%1) -24
fsd f16,8(

addi x1l,x1,-32

bne x1,x2,Loop

The execution time of the unrolled loop has dropped to a total of 14 clock
cycles, or 3.5 clock cycles per element, compared with 8 cycles per element before
any unrolling or scheduling and 6.5 cycles when unrolled but not scheduled.

Dynamic Scheduling - Tomasulo’s Algorithm

Some issues with pipelining

 Memory - unpredictable retrieval speed - cache behavior

» A stall in one Instruction causes entire pipeline to stall

* Long-executing instructions cause long stalls

* |ndependent instructions get stalled, even though they could execute

* Qut-of-order execution might cause WAR and WAW hazards (name dependences
and anti-dependences)

 Doesn’t allow deep speculation

* Not easy to add additional functional units (adders, multipliers, etc.)

Robert Tomasulo - invented technique for IBM 360/91 FP Unit

The “Big Mac” Analogy

The McDonalds drive-up window is a pipeline (“In-order-issue™)
If a customer’s Big Mac (“operand”) is not ready, it stalls the pipeline

If the walit Is long, customer is asked to pull out of the way and wait in a
separate parking space (“reservation station”). This allows the pipeline to
move again (“eliminates the stall”)

When Big Mac is done, employee delivers it to customer

“Out-of-order” completion.

New plan for instruction execution

e [ssue (or dispatch) - instructions are submitted in-order for execution.
Instruction waits in a reservation station until operands are available.

 Execute - when all operands are available, instruction is submitted to an
appropriate functional unit.

o Write Result - when result is available, write it to the Common Data Bus,
which distributes result to reservation station operands and register

From instruction unit

Instruction FP registers
queue
Load/store
operations

Y Floating-point Operand
operations buses

Store buffers

: v| e
, =il

3 2
2 Reservation r
1 stations

Data Address

FP adders multipliers

Common data bus (CDB)

Figure 3.10 The basic structure of a RISC-V floating-point unit using Tomasulo’s algorithm. Instruction
8

Reservation Station Fields

Op - operation to perform on operands S7 and S2
Q)j, Qk - Reservation stations that will produce operand values for S7 and S2

VJ, Vk - Value of source operands, if known already. If known, corresponding Q
IS blank

A - holds memory address (EA - Effective Address) if operand comes from
memory

Busy - Indicates that reservation station Iis busy

Register File

* Qi - Reservation Station that will produce the result for the register, blank if
result is known

Load/Store Buffers

A - holds EA of memory value

10

Example Code

ON O B DN e

fo,32(x2)
f2.44(x3)
fO,f2,f4
f8,f2,f6
fO,f0,f6
fo,f8,f2

11

Tomasulo Example 1

Show what the Tomasulo machine looks like for the previous
code sequence when only the first load has completed and

written its result.

12

10

vid cld

0Td 84 94 vd cd 04 PI°H
s3ay

CLUINN

LLTNN

cddyv

cddyv

1ddayv

cavol

LdVOl

\ MO

e A (A do idsng dueN
SNje}S UOTJPAIISIY

}[NSaY LM

3Indaxyg anssy uonOINISu]
SNje}S UOTPPNIISU]

Instruction status

Instruction Issue Execute Write result
fid f6,32(x2) v v vV
fld f2,44(x3) vV vV
fmul.d f0,f2,f4 Vv
fsub.d f8,f2,f6 Vv
fdiv.d f0,f0,f6 v
fadd.d f6,f8,f2 Vv

Reservation stations
Name Busy Op Vj Qk A
Loadl No
Load2 Yes Load 44 + Regs[x3]
Addl Yes SUB Mem[32 + Regs[x2]] Load?2
Add2 Yes ADD Addl Load2
Add3 No
Multl Yes MUL Regs[f4] Load2
Mult2 Yes DIV Mem[32 + Regs[x2]] Multl

Register status

Field fo f2 fa f6 f8 f10 f12 f30
Qi Multl Load2 Add2 Addl Mult2

Figure 3.11 Reservation stations and register tags shown when all of the instructions have issued but only the
first load instruction has completed and written its result to the CDB. The second load has completed effective

14

Example Continues

Using the same code segment as before, show what the status
would be when the £fmul .d is ready to write its result.

15

Instruction status

Instruction Issue Execute Write result
fid f6,32(x2) Vv Vv Vv
fid f2,44(x3) Vv vV vV
fmul.d f0,f2,f4 Vv vV
fsub.d f8,f2,f6 Vv vV vV
fdiv.d f0,f0,f6 Vv
fadd.d f6,f8,f2 Vv Vv Vv

Reservation stations
Name Busy Op Vj Vk Qj Qk A
Loadl No
Load2 No
Addl No
Add2 No
Add3 No
Mult1 Yes MUL Mem[44 + Regs[x3]] Regs[f4]
Mult2 Yes DIV Mem[32 + Regs[x2]] Multl

Register status

Field fo f2 f4 fé f8 f10 f12 o f30
Q1 Multl Mult2

Figure 3.12 Multiply and divide are the only instructions not finished.
16

Example 2 - A Loop-based Example

Loop: f1d fO,0(x1)
fmul.d f4,f0, f2
fsd f4,0(x1)

add x1,x1,-8
bne x1,x2,Loop // branches if x1#x2

10

vid cld

0Td 84 94 vd cd 04 PI°H
s3ay

CLUINN

LLTNN

cddyv

cddyv

1ddayv

cavol

LdVOl

\ MO

e A (A do idsng dueN
SNje}S UOTJPAIISIY

}[NSaY LM

3Indaxyg anssy uonOINISu]
SNje}S UOTPPNIISU]

Instruction From iteration Issue Execute Write result
fld f0,0(x1) 1 v v
fmul.d f4,f0,f2 1 \
fsd f4,0(x1) 1 v
f1d f0,0(x1) 2 vV vV
fmul.d f4,f0,f2 2 v
fsd f4,0(x1) 2 v

Reservation stations
Name Busy Op Vj Vk Qj Qk A
Loadl Yes Load Regs[x1]+0
Load2 Yes Load Regs[x1] — 8
Addl No
Add2 No
Add3 No
Multl Yes MUL Regs[f2] Loadl
Mult2 Yes MUL Regs[f2] Load2
Storel Yes Store Regs[x1] Multl
Store2 Yes Store Regs[x1l] — 8 Mult2

Register status

Field fo f2 fa f6 f8 f10 f12 f30
Qi Load2 Mule2

Figure 3.14 Two active iterations of the loop with no instruction yet completed. Entries in the multiplier reser-
vation stations indicate that the outstanding loads are the sources. The store reservation stations indicate that

the multiply destination is the source of the value to store.

19

Instruction state Wait until Action or bookkeeping
Issue Station r empty if (RegisterStat[rs].Qi#0)
FP operation {RS[r].Qj « RegisterStat[rs].Qi}

Load or store

else {RS[r].Vj < Regslrs]; RS[r].Qj « 0};
if (RegisterStat[rt].Qis#0)

{RS[r].Qk «— RegisterStat[rt].Qi
else {RS[r].Vk «— Regs[rt]; RS[r].0Qk «< 0};
RS[r].Busy «— yes; RegisterStat[rd].Q < r;

Buffer r empty

if (RegisterStat[rs].Qi#0)

{RS[r].Qj «— RegisterStat(rs].Qi}
else {RS[r].Vj < Regs[rs]; RS[r].Qj «0};
RS[r].A«— imm; RS[r].Busy « yes;

Load only RegisterStat[rt].Qi « r;
Store only if (RegisterStat[rt].Qis#0)
{RS[r].Qk « RegisterStat[rs].Qi}
else {RS[r].Vk < Regs[rt]; RS[r].Qk < 0};
Execute (RS[r].Qj=0) and Compute result: operands are in Vj and Vk
FP operation (RS[r].Qk=10)

Load/storestep |

RS[r].Q) = 0 & r is head of

load-store queue

RS[r].A—RS[r].Vj+RS[r].A;

Load step 2 Load step | complete Read from Mem[RS[r].A]
Write result Execution complete at r & Wx(if (RegisterStat[x].Qi=r) {Regs[x] « result;
FP operation CDB available RegisterStat[x].Qi <« 01});
or load Vx(if (RS[x].Qj=r)

result;RS[x].Q) « 0});

vx(if (RS[x].Qk=r)

{RS[x].Vk «

result;RS[x].Qk « 0});

RS[r].Busy « no;
Store Execution complete at r & Mem[RS[r].A] « RS[r].Vk;

RS[(r].Qk=0

RS[r].Busy «— no;

Figure 3.13 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the des-

20

Speculative Execution

 Allow an instruction to Write Result, but don’t commit until
previous instruction commits.

 Execute both branches of an |IF statement, but don’t commit
until the correct branch is known.

 Add another execution step:
* 1. Issue
e 2. Execute
e 3. Write Result
e 4, Commit (or graduation)

e |nstructions can execute out-of-order, but must commit in-
order, so add a Reorder Buffer (ROB)

21

Reorder buffer

From instruction unit

Y
: Reg#y Data
Instruction 1
queue
FP registers
Load/store
operations
-
Operand
Floating-point buses
operations
Load buffers v
Operation bus
.
4 y Yy v X
2 Reservation 1
1 stations
data Address
FP adders

Common data bus (CDB)

data Y

Figure 3.15 The basic structure of a FP unit using Tomasulo’s algorithm and extended to handle speculation.
22

Reorder buffer

Entry Busy Instruction State Destination Value
| No fld f6,32(x2) Commit fb Mem[32 + Regs[x2]]
2 No fld f2,44(x3) Commit f2 Mem[44 + Regs[x3]]
3 Yes fmul.d fo,f2,f4 Write result fo #2 x Regs[f4]
4 Yes fsub.d f8,f2,f6 Write result f8 #2 — #1
5 Yes fdiv.d fO,f0,f6 Execute f0
6 Yes fadd.d fe,f8,f2 Write result fb #4 + #2

Reservation stations
Name Busy Op Vj Vk Qj Qk Dest A
Loadl No
Load2 No
Addl No
Add2 No
Add3 No
Multl No fmul .d Mem[44 + Regs[x3]] Regs[f4] #3
Mult2 Yes fdiv.d Mem[32 + Regs[x2]] #3 #5

FP register status

Field fo f1 f2 f3 fa f5 fé f7 f8 f10
Reorder # 3 6 4 5
Busy Yes No No No No No Yes Yes Yes

Figure3.16 Atthetimethe fmul . disready to commit, only the two f | d instructions have committed, although
several others have completed execution. The fmul . d is at the head of the ROB, and the two f | d instructions are

23

Multiple Issue + Static Scheduling

More than one iInstruction issued per cycle - superscalar

o Statically scheduled superscalar processors

* Two (or more) identical pipelines.

* One regular pipeline + floating point pipeline
* Very Long Instruction Word (VLIW) processors
 Dynamically scheduled superscalar processors

e AllowsaCPl< 1.0

24

Common Issue Hazard Distinguishing
name structure detection Scheduling characteristic Examples
Superscalar Dynamic Hardware Static In-order execution Mostly in the embedded
(static) space: MIPS and ARM,
including the Cortex-AS53
Superscalar Dynamic Hardware Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculation
Superscalar Dynamic Hardware Dynamic with Out-of-order execution Intel Core 13, 15, 17; AMD
(speculative) speculation with speculation Phenom; IBM Power 7
VLIW/LIW Static Primarily Static All hazards determined Most examples are in signal
software and indicated by compiler processing, such as the TI
(often implicitly) Céx
EPIC Primarily Prnmarily Mostly static All hazards determined [tanium
static software and indicated explicitly
by the compiler

Figure 3.19 The five primary approaches in use for multiple-issue processors and the primary characteristics
that distinguish them. This chapter has focused on the hardware-intensive techniques, which are all some form of

25

VLIW Example

Example Suppose we have a VLIW that could issue two memory references, two FP oper-
ations, and one integer operation or branch in every clock cycle. Show an unrolled
version of the loop x[1] =x[1]+ s (see page 158 for the RISC-V code) for such
a processor. Unroll as many times as necessary to elyminate any stalls.

Loop: fld fO,0(x1) [/fO0=array element
fadd.d f4,f0,f2 //add scalar in f2
fsc f4,0(x1) [/store result 178
addi x1,x1,-8 //decrement pointer

//8 bytes (per DW)
bne x1l,x2,Loop {/branch x1#x2

Loop: fld fO,0(x1)

f1d f6,—8(x1)

f1d fo.*lﬁiéllj\\\\\\\§

f1d fl14,—-24(x1

fadd.d f4,f0,f2 f10
fadd.d f8,f6,f2

fadd.d f1l2,f0,f2

fadd.d fl16,f14,f2

fsd f4,0(x1) -16
fsd f8,—-8(x1)

Fsd f12.16f§/ -24
fsd f16,8(

addi x1,x1,-32

bne x1,x2,Loop

26

Memory Memory Integer
reference 1 reference 2 FP operation 1 FP operation 2 operation/branch

fid f0,0(x1) fld f6,-8(x1)

fld f10,-16(x1) fldfld,6-24(x]1)

f1d f18,-32(x1) f1df22,-40(x1) fadd.d f4,f0,f2 fadd.d f8,f6,f2

fld f26,-48(x1) fadd.d f12,f0,f2 fadd.d f16,f14,f2
fadd.d f20,f18,f2 fadd.d f24,f22,f2

fsd f4,0(x1) fsd f8,-8(x1) fadd.d f28,f26,f24

fsdfl2,-16(x1) fsdfl6,-24(x1) addi x1,x1,-56
fsd f20,24(x1) fsd f24,16(x1)

fsd f28,8(x1) bne x1,x2,Loop

Figure 3.20 VLIW instructions that occupy the inner loop and replace the unrolled sequence. This code takes 9

27

ILP Using Dynamic Scheduling+Multiple Issue+Speculation

Reorder buffer
From instruction unit
S
=3
Y
Instruction | Reg ¥y A
queue
Integer and FP registers
Load/store
operations
Y Y . : Operand
operations '
Load buffers ¥ T i
\J
Operation bus
4 *> + +
Y Yy v \ 5
Reservation 1
stations
FP multipliers Integer unit
;:?ad Common data bus (CDB)

Figure 3.21 The basic organization of a multiple issue processor with speculation. In this case, the organization

28

Branch Target Buffer

PC of instruction to fetch

Number of
entries

in branch-
target
buffer

Predicted PC

No: instruction is not

A

Figure 3.25 A branch-target buffer. The PC of the instruction being fetched is matched against a set of instruc-
tion addresses stored in the first column; these represent the addresses of known branches. If the PC matches one

predicted to be a taken
branch; proceed normally

Yes: then instruction is taken branch and predicted
PC should be used as the next PC

[
Send PC to memory and
branch-target buffer
IF
Entry found in
branch-target
buffer?
\
‘ |
Send out
predicted
Is PC
instruction Yes
a taken
branch?
ID
' No Yes
Normal
instruction
execution
1
‘ J \ .
Enter Mispredicted branch, Branch correctly
branch instruction kill fetched instruction; predicted,
EX address and next restart fetch at other continue execution
PC into branch- target; delete entry with no stalls
target buffer from target buffer
1

Figure 3.26 The steps involved in handling an instruction with a branch-target buffer.

29

Simultaneous Multithreading (SMT)

Intel calls this technique Hyperthreading

Execution slots ———»

Superscalar Coarse MT Fine MT

- [Ime

Figure 3.31 How four different approaches use the functional unit execution slots of a superscalar processor.

30

SMT Tomasulo Processor

Reorder buffer

From instruction unit

7

/ \] + 4
¢ i '
Reg # " v Data
]
Integer and FP registers
Load/store
operations
Y Y . : Operand
Address unit Floating-point buses
operations |
1 . 4
Load buffers vl i
\i
Operation bus
L 2 I I 2 2 2 2 +
Store 3 r 1 L Y) Y v Y ,
address 2 Reservation 1 1
Store 1L stations
data ¢ Address
Memory unit FP adders FP multipliers Integer unit

Load
data

Common data bus (CDB)

Figure 3.21 The basic organization of a multiple issue processor with speculation. In this case, the organization

