Chapter 5 - Thread-Level Parallelism

Processor Processor Processor Processor

One or One or One or One or Private
more levels more levels more levels more levels ity
of cache of cache of cache of cache

Shared cache I

:
Main memory I/O system

Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on
a multicore chip. Multiple processor-cache subsystems share the same physical mem-

Multicore
MP

o=

Interconnection network

=

Memory

/O Memory

; |
/O ' Memory

Memory Memory Memory Memory

Multicore
MP

Figure 5.2 The basic architecture of a distributed-memory multiprocessor in 2017 typically consists of a multi-
core multiprocessor chip with memory and possibly I/0 attached and an interface to an interconnection network
that connects all the nodes. Each processor core shares the entire memory, although the access time to the local

memory attached to the core's chip will be much faster than the access time to remote memories.

Example

Answer

Suppose you want to achieve a speedup of 80 with 100 processors. What fraction
of the original computation can be sequential?

Recall from Chapter | that Amdahl’s Law i1s
1

Speedup = Fraction.uhanced

Sp ccdupcnlmlwd

+ (1 — Fraction ghanced)

For simplicity in this example, assume that the program operates in only two
modes: parallel with all processors fully used, which 1s the enhanced mode, or
serial with only one processor in use. With this simplification, the speedup in
enhanced mode i1s simply the number of processors, whereas the fraction of
enhanced mode 1s the time spent in parallel mode. Substituting into the previous
equation:

1
80

o8 Fractiony.e)
100

+ (1 — Fraction,e:)

Simplifying this equation yields:

0.8 x Fraction. + 80 x (1 — Fraction,pye) = 1

80 —79.2 x Fractionyyee) = |
80—1
792
Fractiongye = 0.9975

Fr actionp,,a“d =

Thus, to achieve a speedup of 80 with 100 processors, only 0.25% of the
original computation can be sequential! Of course, to achieve linear speedup
(speedup of n with n processors), the entire program must usually be parallel
with no serial portions. In practice, programs do not just operate in fully
parallel or sequential mode, but often use less than the full complement of
the processors when running in parallel mode. Amdahl’s Law can be used
to analyze applications with varying amounts of speedup, as the next
example shows.

Example

Answer

Suppose we have an application running on a 100-processor multiprocessor,
and assume that application can use 1, 50, or 100 processors. If we assume
that 95% of the time we can use all 100 processors, how much of the remain-

ing 5% of the execution time must employ 50 processors if we want a speedup
of 807

We use Amdahl’'s Law with more terms:

Speedup = |
e Fraction;y, Fractiong,

Speedup, * Speedups,

+ (1 — Fraction oy — Fractions)

Substituting in:

|

80 =
0.95 Fractiongg :

T (1 —0.95 — Fractiongy)

Simplifying:

0.76 + 1.6 x Fractionsg + 4.0 — 80 x Fractiong; = |

4.76 — 78.4 x Fractiongg =
Fractiongy = 0.048

If 95% of an application can use 100 processors perfectly, to get a speedup of 80,
4.8% of the remaining time must be spent using 50 processors and only 0.2% can
be senal!

Example

Answer

Suppose we have an application running on a 32-processor multiprocessor that has
a 100 ns delay to handle a reference to a remote memory. For this application,
assume that all the references except those involving communication hit in the
local memory hierarchy, which 1s obviously optimistic. Processors are stalled
on a remote request, and the processor clock rate 1s 4 GHz. If the base CPI (assum-
ing that all references hit in the cache) 1s 0.5, how much faster 1s the multiprocessor
if there 1s no communication versus if 0.2% of the instructions involve a remote
communication reference?

It is simpler to first calculate the clock cycles per instruction. The effective CPI for
the multiprocessor with 0.2% remote references 1s
CPI = Base CPI + Remote request rate x Remote request cost

= 0.5 +0.2% x Remote request cost

The remote request cost 1s

Remote access cost o 100ns
Cycle ime - 0.25ns

=400 cycles

Therefore we can compute the CPI:

CPI=0.5+0.20% x 400
=1.3

The multiprocessor with all local references 1s 1.3/0.5=2.6 times faster. In prac-
tice, the performance analysis is much more complex because some fraction of the
noncommunication references will miss in the local hierarchy and the remote

access time does not have a single constant value. For example, the cost of a remote
reference could be worse because contention caused by many references trying to

use the global interconnect can lead to increased delays, or the access time might be
better if memory were distributed and the access was to the local memory.

This problem could have also been analyzed using Amdahl’s Law, an exercise
we leave to the reader.

Cache contents for Cache contents for Memory contents for

Time Event processor A processor B location X
0 l
] Processor A reads X 1 1
2 Processor B reads X l 1 1
3 Processor A stores 0 | 0
0 mto X

Figure 5.3 The cache coherence problem for a single memory location (X), read and written by two processors (A

and B). We initially assume that neither cache contains the variable and that X has the value 1. We also assume a write-
through cache; a write-back cache adds some additional but similar complications. After the value of X has been
written by A, A’s cache and the memory both contain the new value, but B's cache does not, and if B reads the value

of X it will receive 1!

A memory system 1s coherent if

1. A read by processor P to location X that follows a write by P to X, with no writes
of X by another processor occurring between the write and the read by P, always
returns the value written by P.

2. A read by a processor to location X that follows a write by another processor to
X returns the written value if the read and write are sufficiently separated in time
and no other writes to X occur between the two accesses.

3. Writes to the same location are serialized; that i1s, two writes to the same
location by any two processors are seen in the same order by all processors.
For example, 1if the values 1 and then 2 are written to a location, processors
can never read the value of the location as 2 and then later read it as 1.

Directory-Based vs Snhooping Protocols

Directory based—The sharing status of a particular block of physical memory
1s kept 1n one location, called the directory. There are two very different types

of directory-based cache coherence. In an SMP, we can use one centralized
directory, associated with the memory or some other single serialization point,

such as the outermost cache in a multicore. In a DSM, it makes no sense to have
a single directory because that would create a single point of contention and
make 1t difficult to scale to many multicore chips given the memory demands
of multicores with eight or more cores. Distributed directories are more com-
plex than a single directory, and such designs are the subject of Section 5.4.

Snooping—Rather than keeping the state of sharing in a single directory, every
cache that has a copy of the data from a block of physical memory could track
the sharing status of the block. In an SMP, the caches are typically all acces-
sible via some broadcast medium (e.g., a bus connects the per-core caches to
the shared cache or memory), and all cache controllers monitor or snoop on the
medium to determine whether they have a copy of a block that 1s requested on a
bus or switch access. Snooping can also be used as the coherence protocol for a

multichip multiprocessor, and some designs support a snooping protocol on
top of a directory protocol within each multicore.

Contents of processor Contents of processor Contents of memory

Processor activity Bus activity A's cache B's cache location X
0
Processor A reads X Cache miss 0 0
for X
Processor B reads X Cache miss 0 0 0
for X
Processor A writes a Invalidation | 0
l o X for X
Processor B reads X Cache miss | | |
for X

Figure 5.4 An example of an invalidation protocol working on a snooping bus for a single cache block (X) with
write-back caches. We assume that neither cache initially holds X and that the value of X in memory is 0. The pro-

State of Type of
addressed cache

Request Source cache block action Function and explanation

Read hit Processor Shared or Normal hit Read data in local cache.

modified

Read Processor Invalid Normal miss Place read miss on bus.

miss

Read Processor Shared Replacement Address conflict miss: place read miss on bus.

miss

Read Processor Modified Replacement Address conflict miss: write-back block; then place read

miss miss on bus.

Write hit ~ Processor Modified Normal hat Write data in local cache.

Write hit Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, because they do not fetch the
data but only change the state.

Write Processor Invalid Normal miss Place write miss on bus.

miss

Write Processor Shared Replacement Address conflict miss: place write miss on bus.

miss

Write Processor Modified Replacement Address conflict miss: write-back block; then place write

miss miss on bus.

Read Bus Shared No action Allow shared cache or memory to service read miss.

miss

Read Bus Modified Coherence Attempt to read shared data: place cache block on bus,

miss write-back block, and change state to shared.

Invalidate Bus Shared Coherence Attempt to write shared block; invalidate the block.

Write Bus Shared Coherence Attempt to write shared block; invalidate the cache block.

miss

Write Bus Modified Coherence Attempt to write block that 1s exclusive elsewhere; write-

miss back the cache block and make its state invalid in the local

cache.

Figure 5.5 The cache coherence mechanism receives requests from both the core’s processor and the shared bus

and responds to these based on the type of request, whether it hits or misses in the local cache, and the state of
the local cache block specified in the request. The fourth column describes the type of cache action as normal hit or

CPU read hit

Shared
(read only)

Place read miss on bus

CcPU
read
miss

Place read
miss on bus

| Cache state transitions
based on requests from CPU

CPU write miss

(read/wnite)

Write-back cache block
Place write miss on bus

CPU write hit
CPU read hit

Write miss
for this block

Write miss for this block
/

Invahdate for
this block

CPU
read
miss

access

Write-back block;
abort memory

Read miss

for this block Cache state transitions based
on reguests from the bus

Figure 5.6 A write invalidate, cache coherence protocol for a private write-back cache showing the states and
state transitions for each block in the cache. The cache states are shown in circles, with any access permitted by the

Write miss for this block

"/‘-'-’-‘—

Invalidate for this block

-y

Shared

CPU read (read only)

Place read miss on bus

CPU
? CPU write read
D miss
x s
_g 2 Place read
- E _ miss on bus
> o &
3 % &P, 2
2 gl O
Bl g
Y
Write miss
for block
Exclusive
(read/write)
CPU write miss
CPU write hit
CPU read hit

Whrite-back data
Place write miss on bus

Figure 5.7 Cache coherence state diagram with the state transitions induced by the
local processor shown in black and by the bus activities shown in gray. As in

Figure 5.6, the activities on a transition are shown in bold.

Other Protocol Variations

« MESI (Modified, Exclusive, Shared, Invalid)

* EXxclusive - Block is in only one cache, and is clean
« MOESI (Modified, Owned, Exclusive, Shared, Invalid)

 Owned - One cache “owns” block, is out-of-date in main memory
« MESIF (Modified, Exclusive, Shared, Invalid, Forward)

 Forward - Cache in ‘F’ state will be only responder for cache request

Example

Answer

Consider an 8-processor multicore where each processor has its own L1 and L2
caches, and snooping is performed on a shared bus among the L2 caches. Assume
the average L2 request, whether for a coherence miss or other miss, 1s 15 cycles.
Assume a clock rate of 3.0 GHz, a CPI of 0.7, and a load/store frequency of 40%.
If our goal 1s that no more than 50% of the L2 bandwidth 1s consumed by coherence
traffic, what 1s the maximum coherence miss rate per processor?

Start with an equation for the number of cache cycles that can be used (where CMR
1s the coherence miss rate):

Clock rate ~ 3.0Ghz
Cyclesperrequest x2 30

Cache cycles available = = 0.1 x 10°

Cache cycles available = Memory references/ clock /processor x Clock rate
x processor count x CMR

0.4

=55 3.0GHz x 8 x CMR = 13.7 x 10" x CMR
CMR = . —0.0073 = 0.73%
G A o R T Rt

This means that the coherence miss rate must be 0.73% or less. In the next section,
we will see several applications with coherence miss rates in excess of 1%. Alter-
natively, if we assume that CMR can be 1%, then we could support just under 6

processors. Clearly, even small multicores will require a method for scaling snoop
bandwidth.

Processor Processor Processor Processor
One or One or One or One or
more levels more levels more levels more levels
of private of private of private of private
cache cache cache cache

I I |

Bank O Bank 1 Bank 2 Bank 3
shared shared shared shared
cache cache cache cache

| [f

[Interconnection network j

- e

Memory I/O system

Figure 5.8 A single-chip multicore with a distributed cache. In current designs, the

NUCA - Non-uniform cache access

Example Assume that words z1 and z2 are in the same cache block, which is in the shared
state in the caches of both P1 and P2. Assuming the following sequence of events,
identify each miss as a true sharing miss, a false sharing miss, or a hit. Any miss
that would occur if the block size were one word 1s designated a true sharing miss.

Answer

Time P1 P2

] Write z1

2 Read 22
3 Write z1

4 Write 22
5 Read z2

Here are the classifications by time step:

1.

This event is a true sharing miss, since z1 1s in the shared state in P2 and needs to
be invalidated from P2.

. This event 1s a false sharing miss, since z2 was invalidated by the write of zI In

P1, but that value of zI i1s not used in P2.

This event 1s a false sharing miss, since the block containing z1 1s marked
shared due to the read in P2, but P2 did not read z1. The cache block containing
z1 will be in the shared state after the read by P2: a write miss 1s required to
obtain exclusive access to the block. In some protocols, this will be handled
as an upgrade request, which generates a bus invalidate, but does not transfer
the cache block.

This event 1s a false sharing miss for the same reason as step 3.

. This event 1s a true sharing miss, since the value being read was written by P2.

Cache level Characteristic Alpha 21164 Intel i7

L1 Size 8KB I/§KB D 32KBI/32KB D
Associativity Direct-mapped 8-way I/8-way D
Block size 32B 64 B
Miss penalty 7 10

L2 Size 96 KB 256 KB
Assoclativity 3-way 8-way
Block size 32B 64 B
Miss penalty 21 35

L3 Size 2 MiB (total 8 MiB unshared) 2 MiB per core (8 MiB total shared)
Associativity Direct-mapped 16-way
Block size 64 B 64 B
Miss penalty 80 ~100

Figure 5.9 The characteristics of the cache hierarchy of the Alpha 21164 used in this study and the Intel i7.

100 -
E

901 e m |dle
@ PAL code

o 80 - o Memory access
= m L2/L3 cache access
'.g 70 - ® |nstruction execution
8 ooy
x 50 - |
D 40 -
N
£ 30 -
32 20-

10 -

0

1 2 4 8
L3 cache size (MB)

Figure 5.10 The relative performance of the OLTP workload as the size of the L3
cache, which is set as two-way set associative, grows from 1 to 8 MiB. The idle time

3.25 -

q
2.75 #@ |nstruction
25 - @ Capacity/conflict
5 ok o Compulsory
B 295 - @ False sharing
= ' ® True sharing
) 2 .
R =
8 1.75
8 q
g 1.5
- 1.25 1
) (S
= 0.75 -
0.5 -
0.25 -
0

2 4
Cache size (MB)

Figure 5.11 The contributing causes of memory access cycle shift as the cache size is
increased. The L3 cache is simulated as two-way set associative.

Multicore

processor
+ caches

Multicore

processor
+ caches

Multicore
processor

Multicore

processor
+ caches

Directory Directory

I Directory .— ‘ Directory I—

Interconnection network

Multicore
processor
+ caches

Multicore
processor
+ caches

Multicore
processor

+ caches

Figure 5.18 A directory is added to each node to implement cache coherence in a distributed-memory multi-
processor. In this case, a node is shown as a single multicore chip, and the directory information for the associated

memory may reside either on or off the multicore. Each directory is responsible for tracking the caches that share the
memory addresses of the portion of memory in the node. The coherence mechanism will handle both the mainte-
nance of the directory information and any coherence actions needed within the multicore node.

Directory-Based Coherence Protocols

 Shared - One or more nodes have copy, up-to-date

 Uncached - No node has a copy Iin cache

 Modified - one cache has written a value, other copies (including main
memory) are out-of-date

Message Message

type Source Destination contents Function of this message

Read miss Local cache Home P, A Node P has a read miss at address A; request data and make P a

directory read sharer.

Write Local cache Home P, A Node P has a write miss at address A; request data and make P

miss directory the exclusive owner.

Invalidate Local cache Home A Request to send invalidates to all remote caches that are

directory caching the block at address A.

Invalidate Home Remote A Invalidate a shared copy of data at address A.
directory cache

Fetch Home Remote A Fetch the block at address A and send it to 1ts home directory;
directory cache change the state of A in the remote cache to shared.

Fetch/ Home Remote A Fetch the block at address A and send it to 1ts home directory;

invalidate directory cache invalidate the block in the cache.

Data Home Local cache D Return a data value from the home memory.

value directory

reply

Data Remote Home A.D Write back a data value for address A.

wrile- cache directory

back

Figure 5.19 The possible messages sent among nodes to maintain coherence, along with the source and des-

tination node, the contents (where P = requesting node number, A =requested address, and D = data contents),
and the function of the message. The first three messages are requests sent by the local node to the home. The

CPU read hit

Invalidate

Shared
- (read only)

CPU read
Send read miss message

“ & A
$ | &/ F e ¢ ?JZ‘J
CPU write 0.,,6 NP &P ,
:) mis
Read miss

Data write-back
Send write miss message

N
K
Y
Fetch
invalidate
Modified
(read/write)
CPU write hit CPU write miss
CPU read hit

Data write-back
Write miss

Figure 5.20 State transition diagram for an individual cache block in a directory-based system. Requests by the
local processor are shown in black, and those from the home directory are shown in gray. The states are identical to

Data value reply;

Sharers = {P)} Shared

(read only)

Read miss

Write miss o0
< \ miss

ES LK B 4
s S’ § Data value reply
n| o | Sharers = Sharers + {P)
(7 - O
i~ E .
|5 g &P
5188 »°
“ Q Qg? \fb

Data
write-back

Exclusive
(read/write)

™
N\

Write | Fetch/invalidate
miss /| Data value reply

/ Sharers = {P)

Figure 5.21 The state transition diagram for the directory has the same states and structure as the transition
diagram for an individual cache. All actions are in gray because they are all externally caused. Bold indicates the

action taken by the directory in response to the request.

Uncached and shared state behavior

m Read miss—The requesting node 1s sent the requested data from memory, and
the requester 1s made the only sharing node. The state of the block 1is
made shared.

m Write miss—The requesting node 1s sent the value and becomes the sharing
node. The block 1s made exclusive to indicate that the only valid copy 1s
cached. Sharers indicates the 1dentity of the owner.

When the block 1s in the shared state, the memory value is up to date, so the same
two requests can occur:

m Read miss—The requesting node 1s sent the requested data from memory, and
the requesting node 1s added to the sharing set.

m Write miss—The requesting node 1s sent the value. All nodes in the set Sharers
are sent invalidate messages, and the Sharers set 1s to contain the identity of the
requesting node. The state of the block 1s made exclusive.

Exclusive state behavior

m Read miss—The owner 1s sent a data fetch message, which causes the state of
the block in the owner’s cache to transition to shared and causes the owner to
send the data to the directory, where 1t is written to memory and sent back to the
requesting processor. The identity of the requesting node 1s added to the set

Sharers, which still contains the i1dentity of the processor that was the owner
(since 1t still has a readable copy).

m Data write-back—The owner 1s replacing the block and therefore must write it
back. This write-back makes the memory copy up to date (the home directory
essentially becomes the owner), the block 1s now uncached, and the Sharers set

1s empty.

m Write miss—The block has a new owner. A message 1s sent to the old owner,
causing the cache to invalidate the block and send the value to the directory,
from which it 1s sent to the requesting node, which becomes the new owner.

Sharers is set to the 1dentity of the new owner, and the state of the block remains
exclusive.

