Appendix E - Embedded Processors

Feature	Desktop	Server	Embedded
Price of system	\$1000-\$10,000	\$10,000-\$10,000,000	\$10–\$100,000 (including network routers at the high end)
Price of microprocessor module	\$100-\$1000	\$200–\$2000 (per processor)	\$0.20–\$200 (per processor)
Microprocessors sold per year (estimates for 2000)	150,000,000	4,000,000	300,000,000 (32-bit and 64-bit processors only)
Critical system design issues	Price-performance, graphics performance	Throughput, availability, scalability	Price, power consumption, application-specific performance

Figure E.1 A summary of the three computing classes and their system characteristics. Note the wide range in

Characteristics of Embedded Processors

Deterministic Instruction Execution

- Sacrifice performance for predictable execution behavior
- Each instruction has specific timing characteristics
- Simple memory structures (predictable cache behavior)
- Simplified instruction fetch, simple pipelines
- Tomasulo execution?

Characteristics of Embedded Processors

Calculation behavior

- Saturation arithmetic rather than value wraparound, "overflow" values clamped at maximum.
- Fixed point arithmetic integer arithmetic, radix point is assumed.
 - Compared with floating point, sacrifices dynamic range for execution speed
- Special instruction types
 - Multiply-Accumulate (MAC) instruction
 - Built-in sine/cosine function approximations
 - SIMD Instructions

Characteristics of Embedded Processors

Plentiful I/O

- I/O Pins are a precious resource!
- Pins have multiple functions
 - Input
 - Output
 - Current sink/source
 - Standard interfaces (I2C, USB, PWM, etc)
 - Memory Address/Data
 - Interrupts

Embedded Categories

- Microcontrollers
 - 8-32 bit data path
 - No/limited operating system
 - Power efficient
 - Flexible I/O capabilities
 - Both legacy and modern architectures
 - Built-in flash memory for instructions, RAM for data
 - Examples: 8051, 8080/Z80, AVR (Arduino), PIC (Microchip)

Embedded Categories (Con't)

- Microprocessors
 - 8-64 bit data path
 - Real time operating system (Linux, Free RTOS, Lynx-OS)
 - Power-efficient
 - Flexible I/O
 - Built-in Flash ROM, RAM
 - Examples: Raspberry-PI, 80x86, ARM

Embedded Categories (Con't)

- Digital Signal Processors
 - 16-64 bit data path
 - Common/RTOS/specialized Operating system (Linux, DSP/BIOS)
 - Regular and specialized instructions such as MAC (Multiply/accumulate)
 - FFT (Fast Fourier transform)

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn} \quad \text{where} \quad W_N^{kn} = e^{j\frac{2\pi kn}{N}} = \cos\left(2\pi\frac{kn}{N}\right) + j\sin\left(2\pi\frac{kn}{N}\right)$$

- Power efficient
- Flexible I/O
- Examples: TI320C55, TI 320C6x, DSP56301

Embedded Categories (Con't)

- High performance processors
 - 24-64 bit data path
 - Specialized versions of common processors
 - Variety of Operating Systems (Linux, Windows, RTOS's)
 - Deterministic execution
 - Examples: Pentium, ARM

AVR Processor

Microcontroller

- 8-bit data path, 16 bit instructions
- 2-stage pipeline fetch, execute
- 16 MHz clock speed
- Built-in Flash ROM for instructions, RAM for memory
- Family includes 8-pin package, <\$1.00 cost
- Basis for Arduino UNO, ~\$25, 1K RAM, 32K ROM

Raspberry Pl

Microprocessor

- ARM-based single board computer
- 80 MHz clock speed
- Linux-capable
- Memory management
- Some models are multi-core
- Some models <\$25.00

Generation	Year	Example DSP	Data width	Accumulator width
1	1982	TI TMS32010	16 bits	32 bits
2	1987	Motorola DSP56001	24 bits	56 bits
3	1995	Motorola DSP56301	24 bits	56 bits
4	1998	TI TMS320C6201	16 bits	40 bits

Figure E.2 Four generations of DSPs, their data width, and the width of the registers that reduces round-off error.

Digital Signal Processor - TI320C55

Seven Stage Pipeline

- Fetch stage reads program data from memory into the instruction buffer queue.
- Decode stage decodes instructions and dispatches tasks to the other primary functional units.
- Address stage computes addresses for data accesses and branch addresses for program discontinuities.
- Access 1/Access 2 stages send data read addresses to memory.
- Read stage transfers operand data on the B bus, C bus, and D bus.
- Execute stage executes operation in the A unit and D unit and performs writes on the E bus and F bus.

Figure E.4 Architecture of the TMS320C55 DSP. The C55 is a seven-stage pipelined processor with some unique instruction execution facilities. (Courtesy Texas Instruments.)

Figure E.5 Architecture of the TMS320C64x family of DSPs. The C6x is an eight-issue traditional VLIW processor. (Courtesy Texas Instruments.)

Figure E.6 Instruction packet of the TMS320C6x family of DSPs. The p bits determine whether an instruction begins a new VLIW word or not. If the p bit of instruction i is 1, then instruction i + 1 is to be executed in parallel with (in the same cycle as) instruction i. If the p bit of instruction i is 0, then instruction i + 1 is executed in the cycle after instruction i. (Courtesy Texas Instruments.)