Computer Architecture

Appendix C - Pipelining: Basic Concepts

_ : Execute/ . : .
Instruction decode/ ; address ; Memory - Write-

Instruction fetch register fetch § calculation ; access - back
S
| z .
NPC/|-s- § E
: > B h :
4 - =2 el Cond|:
; taken :
>~ PC|-+ - (M
. u -
Instruction — A *>| x ? :
memory [Registers -\ aLul TAaLu | f
LN - = :
: M output|. :
| x memory : u
' |\ . >
: : : _/
12 32 : S B
e Immi— |

Figure C.18 The implementation of the RISC V data path allows every instruction to be executed in 4 or 5 clock
2

RISC-V Data Path

1. Instruction fetch cycle (IF):

IR—Mem[PC]:
NPC —PC + 4;

Operation—Send out the PC and fetch the instruction from memory into the
instruction register (IR); increment the PC by 4 to address the next sequential
instruction. The IR 1s used to hold the instruction that will be needed on subsequent
clock cycles; likewise, the register NPC 1s used to hold the next sequential PC.

RISC-V Data Path

2. Instruction decode/register fetch cycle (ID):

A —Regs[rsl];
B« Regs[lrsz];
Imme—sign- extended immediate field of IR;

Operation—Decode the instruction and access the register file to read the reg-
isters (rs1 and rs2 are the register specifiers). The outputs of the general-purpose
registers are read into two temporary registers (A and B) for use in later clock
cycles. The lower 16 bits of the IR are also sign extended and stored into the

temporary register Imm, for use in the next cycle.

RISC-V Data Path

3. Execution/effective address cycle (EX):

The ALU operates on the operands prepared in the prior cycle, performing one
of four functions depending on the RISC V instruction type:

m Memory reference:
ALUOQutput <A+ Imm;

Operation—The ALU adds the operands to form the effective address and
places the result into the register ALUOQOutput.

m Register-register ALU instruction:

ALUOutput <A func B;

Operation—The ALU performs the operation specified by the function code
(a combination of the func3 and func7 fields) on the value in register A
and on the value 1n register B. The result 1s placed in the temporary register

ALUOQOutput.

RISC-V Data Path

m Register-Immediate ALU instruction:
ALUOutput <A op Imm;

Operation—The ALU performs the operation specified by the opcode on the
value in register A and on the value in register Imm. The result is placed in

the temporary register ALUOQOutput.

m Branch:

ALUOutput «NPC + (Imm << 2) ;
Cond «— (A ==8B)

Operation—The ALU adds the NPC to the sign-extended immediate value in
Imm, which is shifted left by 2 bits to create a word offset, to compute the
address of the branch target. Register A, which has been read 1n the prior cycle,
1s checked to determine whether the branch 1s taken, by comparison with Reg-
ister B, because we consider only branch equal.

RISC-V Data Path

4. Memory access/branch completion cycle (MEM):
The PC is updated for all instructions: PC «— NPC ;

m Memory reference:

LMD «—Mem[ALUOutput] or
Mem[ALUQutput] «B;

Operation—Access memory 1f needed. If the instruction 1s a load, data return
from memory and are placed in the LMD (load memory data) register; if it is a
store, then the data from the B register are written into memory. In either case,
the address used 1s the one computed during the prior cycle and stored in the
register ALUOQutput.

m Branch:

if (cond) PC«—ALUOutput

Operation—If the instruction branches, the PC is replaced with the branch des-
tination address 1n the register ALUOQOutput.

RISC-V Data Path

5. Write-back cycle (WB):
m Register-register or Register-immediate ALU instruction:
Regs[rd] «—ALUOutput;
m Load instruction:
Regs[rd] « LMD;

Operation—Write the result into the register file, whether it comes from the
memory system (which 1s in LMD) or from the ALU (which 1s in ALUOQOutput)
with rd designating the register.

RISC-V Pipeline w/Pipeline Registers

IF/ID ID/EX EX/MEM MEM/WB
4
| M Branch
u > taken
X g =" -
IR1g._ 15
-lPC L IRy 50 M
Instruction| IR _I o o el :
memory [MEM/WB.IR |Registers o SR
e ‘M)
B ——»1 |, — Data [M
R — memory u
o, _ a =
I \12 Sign- 32 -
extend

Figure C.19 The data path is pipelined by adding a set of registers, one between each pair of pipe stages. The

RISC-V Detailed Operation

Stage Any instruction

IF [F/ID.IR«—Mem[PC]

[F/ID.NPC,PC+—(if ((EX/MEM.opcode == branch) & EX/MEM.cond) { EX/MEM.
ALUOQutput} else {PC+4});

ID ID/EX.A«~—Regs[IF/ID.IR[rs1]]; ID/EX.B—Regs[IF/ID.IR[rs2]];
ID/EX.NPC—IF/ID.NPC; ID/EX.IR«—IF/ID.IR;
ID/EX.Imme—sign-extend(IF/ID.IR[immediate field]);

ALU instruction Load instruction Branch instruction

EX EX/MEM.IR—~ID/EX.IR; EX/MEM.IR to ID/EX.IR EX/MEM.ALUQutput «
EX/MEM.ALUOQutput « EX/MEM.ALUQutput « ID/EX.NPC +
ID/EX.A func ID/EX.B; ID/EX.A+ID/EX. Imm; (ID/EX.Imm< < 2);
or
EX/MEM.ALUOutput «

ID/EX.A op ID/EX.Imm;
EX/MEM.B«—ID/EX.B; EX/MEM.cond «
(ID/EX.A==ID/EX.B);
MEM MEM/WB.IR—EX/MEM.IR; MEM/WB.IR«—EX/MEM.IR:
MEM/WB.ALUQutput « MEM/WB . LMD «
EX/MEM.ALUQutput; Mem[EX/MEM.ALUQutput];
or
Mem[EX/MEM.ALUQutput] «
EX/MEM.B;
WB Regs[MEM/WB.IR[rd]]« For 1Toad only:
MEM/WB.ALUOQutput; Regs[MEM/WB.IR[rd]] «
MEM/WB . LMD;

Figure C.20 Events on every pipe stage of the RISCV pipeline. Let’s review the actions in the stages that are specific

RISC-V Pipeline: Abbreviated Diagram |

Time (in clock cycles) -
CC1 CC2 CC3 CC4 CC5 CC6
IM [Reg E DM Reg

IM I— Reg ’E DM —Reg
IM L ng_ lg DM
/B LA b
IM [_ Reg >3
s <
/B L

| Figure C.3 A pipeline showing the pipeline registers between successive pipeline stages. Notice that the registers
11

RISC-V Pipeline: Abbreviated Diagram I

Clock number

Instruction number 1 2 3 4 5 6 7 8 9
Instruction i IF ID EX MEM WB

Instruction i+ 1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+ 3 IF ID EX MEM WB
Instruction i+4 IF ID EX MEM WB

Figure C.1 Simple RISC pipeline. On each clock cycle, another instruction is fetched and begins its five-cycle

12

RISC-V Performance Example

Example Consider the unpipelined processor in the previous section. Assume that it has a
4 GHz clock (or a 0.5 ns clock cycle) and that it uses four cycles for ALU oper-
ations and branches and five cycles for memory operations. Assume that the rel-
ative frequencies of these operations are 40%, 20%, and 40%, respectively.
Suppose that due to clock skew and setup, pipelining the processor adds 0.1 ns
of overhead to the clock. Ignoring any latency impact, how much speedup in
the instruction execution rate will we gain from a pipeline?

Answer The average instruction execution time on the unpipelined processor is
Average instruction execution time = Clock cycle x Average CPI
= 0.5ns x [(40% +20%) x 4 +40% x 5]
=0.5ns x4 .4
=2.2ns

In the pipelined implementation, the clock must run at the speed of the slowest
stage plus overhead, which will be 0.5+ 0.1 or 0.6 ns; this is the average instruction
execution time. Thus, the speedup from pipelining is

Average instruction time unpipelined

Speedun fr IO
e Sk & S Average instruction time pipelined

- 2.2 ns
0.6 ns

The 0.1 ns overhead essentially establishes a limit on the effectiveness of pipelin-
ing. If the overhead is not affected by changes in the clock cycle, Amdahl’s Law
tells us that the overhead limits the speedup.

= 3.7 times

Instruction-Level Parallelism Roadmap

Technique Reduces Section
Forwarding and bypassing Potential data hazard stalls C.2
Simple branch scheduling and prediction Control hazard stalls C.2
Basic compiler pipeline scheduling Data hazard stalls C2,3.2
Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependences C.7
Loop unrolling Control hazard stalls 3.2
Advanced branch prediction Control stalls 3.3
Dynamic scheduling with renaming Stalls from data hazards, output dependences, and 34
antidependences

Hardware speculation Data hazard and control hazard stalls 3.6
Dynamic memory disambiguation Data hazard stalls with memory 3.6
Issuing multiple instructions per cycle Ideal CPI 3.7, 3.8
Compiler dependence analysis, software pipelining, Ideal CPI, data hazard stalls H.2, H.3

trace scheduling

Hardware support for compiler speculation Ideal CPI, data hazard stalls, branch hazard stalls H.4, H.5

Figure 3.1 The major techniques examined in Appendix C, Chapter 3, and Appendix H are shown together with
the component of the CPI equation that the technique affects.

14

Data Dependencies

For an instruction sequence |/, J, K, an instruction J Is data-dependent on
instruction 1 if:

* |nstruction / produces a result that may be used by instruction J, or

e |nstruction j is data-dependent on instruction k, and instruction k Is
data-dependent on instruction /.

Loop: flc f0,0(x1) //fO0=array element
fadd.d f4,f0,f2 //add scalar in f2
fsc f4,0(x1) //store result
addi x1,x1,-8 //decrement pointer 8 bytes
bne x1,x2,Loop //branch x1#x2

Also called true dependencies

15

Name Dependences

The second type of dependence 1s a name dependence. A name dependence occurs
when two Instructions use the same register or memory location, called a name, but
there 1s no flow of data between the instructions associated with that name. There
are two types of name dependences between an instruction i that precedes instruc-
tion j in program order:

1. An antidependence between instruction i and instruction j occurs when instruc-
tion j writes a register or memory location that instruction i reads. The original

ordering must be preserved to ensure that i reads the correct value. In the example
on page 171, there is an antidependence between fsd and addi onregister X 1.

2. An output dependence occurs when instruction i and instruction j write the same
register or memory location. The ordering between the instructions must be
preserved to ensure that the value finally written corresponds to instruction j.

16

Control Dependencies

if pl {
S1;
iz
if p2 {
NE S
J

S1 is control-dependent on pl, and SZ is control-dependent on pZ but not
on pl.

In general, two constraints are imposed by control dependences:

1. Aninstruction that is control-dependent on a branch cannot be moved before the
branch so that its execution is no longer controlled by the branch. For example,
we cannot take an instruction from the then portion of an if statement and move
it before the 1f statement.

2. An instruction that is not control-dependent on a branch cannot be moved after
the branch so that its execution is controlled by the branch. For example, we
cannot take a statement before the if statement and move it into the then portion.

17

Pipeline Hazards

e Structural Hazards
e Data Hazards

e Control Hazards

18

Structural Hazards

Possible structural hazards:

1 -y N Npml e
] S f— /] T_ s
o all Erwy s Epal Epy
5 3 1 1
IM - . \é DM
3 _;/_ &_ —'—_

* In CC4, memory is accessed by both inst 1 and inst 4

* In CC5, reqister file is accessed by both inst 1 and inst 4

19

Data Hazards

1. Read After Write (RAW) hazard: the most common, these occur when a
read of register x by instruction j occurs before the write of register x by instruc-
tion i. If this hazard were not prevented instruction j would use the wrong value
of x.

2. Write After Read (WAR) hazard: this hazard occurs when read of register x by
instruction i occurs after a write of register x by instruction j. In this case,
instruction i would use the wrong value of x. WAR hazards are impossible
in the simple five stage, integrer pipeline, but they occur when instructions

are reordered, as we will see when we discuss dynamically scheduled pipelines
beginning on page C.65.

3. Write After Write (WAW) hazard: this hazard occurs when write of register x by
instruction occurs after a write of register x by instruction j. When this occurs,
register x will have the wrong value going forward. WAR hazards are also
impossible in the simple five stage, integrer pipeline, but they occur when
instructions are reordered or when running times vary, as we will see later.

20

Data Hazard Example

Consider the pipelined execution of these instructions:

Program execution order (in instructions)

Y

add
sub
and
or

Xor

DADD R1, R2, R3

DSUB R4, R1, R5

AND R6, RI1, R7

OR R8, RI1, R9

XOR R10, R1, R11l

) RS At &5
X4 ,X1,X5
X6,x1,x/
x8,x1,x9
x10,x1,x11

Time (in clock cycles)

CC 1 CC?2 CC3 CC4 CC5 CC6
IM L Reg ; DM Reg
IM [— Reg § DM Reg
Sanane — I e e
IM F Reg ; DM
:....._/ |
— b
M Reg =
IM r Reg

Figure C.4 The use of the result of the add instruction in the next three instructions causes a hazard, because the
register is not written until after those instructions read it.

Data Hazard - one solution

Time (in clock cycles)

CC 1 CC2 CC CC 4 CC5 CC6
DADD R1, R2, R3 IM T Reg E’ DM Reg |
z < :
T / | e
DSUB R4, R1, R5 M i S . 2 —
F Reg i

22

Performance of Pipelines With Stalls

A stall causes the pipeline performance to degrade from the ideal performance.
Let’s look at a simple equation for finding the actual speedup from pipelining,
starting with the formula from the previous section:

Average instruction time unpipelined

Speedup fr ipelining =
. e S Average instruction time pipelined

~ CPI unpipelined x Clock cycle unpipelined
~ CPI pipelined x Clock cycle pipelined

~ CPI unpipelined x Clock cycle unpipelined
~ CPI pipelined x Clock cycle pipelined

Pipelining can be thought of as decreasing the CPI or the clock cycle time. Because
it is traditional to use the CPI to compare pipelines, let’s start with that assumption.
The 1deal CPI on a pipelined processor is almost always 1. Hence, we can compute

the pipelined CPI:
CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction

= 1 + Pipelines stall clock cycles per instruction

If we ignore the cycle time overhead of pipelining and assume that the stages
are perfectly balanced, then the cycle time of the two processors can be equal,
leading to

CPI unpiplined
1 + Pipeline stall cycles per instruction

Speedup =

One important simple case 1s where all instructions take the same number of cycles,
which must also equal the number of pipeline stages (also called the depth of the
pipeline). In this case, the unpipelined CPI is equal to the depth of the pipeline,
leading to

Pipeline depth
1 + Pipeline stall cycles per instruction

Speedup =

If there are no pipeline stalls, this leads to the intuitive result that pipelining can
improve performance by the depth of the pipeline.

293

Data Forwarding (or Bypassing)

Time (in clock cycles)

\j

CC 1 CC?2 CC3 CC4 CC5 CC®6
DADD R1, R2, R3 IM T Reg 3B DM)| Reg |

DSUB R4, R1, R5 M ' Reg -4 ? —{ DM Reg -

IM L

. Reg B DM

AND R6, RI1, R7

Program execution order (in instructions)

E
OR R8, R1, R9 IM Reg

ALU

XOR R10, RI, RI1l

B N R e T T e e e S e T e T T S e e .. 1= N 127 0% 272 —_—

IM [— Reg

Figure C.5 A set of instructions that depends on the add result uses forwarding paths to avoid the data hazard.

24

Time (in clock cycles)

CC 1 CC2

DADD R1, RZ2, R3 M

CC4

DM

LD R4, O(R1) IM

Program execution order (in instructions)

SD R4,12(R1)

DM

Figure C.6 Forwarding of operand required by stores during MEM. The result of the load is forwarded from the
memory output to the memory input to be stored. In addition, the ALU output is forwarded to the ALU input for the
address calculation of both the load and the store (this is no different than forwarding to another ALU operation). If
the store depended on an immediately preceding ALU operation (not shown herein), the result would need to be

forwarded to prevent a stall.

25

Early Branch decision

—— “\
W ID/EX
ADOJ
' IEAD g EXIMEM MEM/WE
- ¥
4+ T~ - oS P
- _./;A\ |
>A0ﬂ u
- ,—'" _x./ T
- IRe 10
- pc — IR11 15
Instruction | IR i - J
chesonst 8l R MEMWB.IR | Regrsters ~ &
M —
\
u
. - X memory ['_’{Lj
o
- - - \x
/ \ 32 ‘l
Sign \ '
[3 -
"enend. ¢ i - i
_/ L

Figure C.25 To minimize the impact of deciding whether a conditional branch is taken, we compute the branch
target address in ID while doing the conditional test and final selection of next PC in EX. As mentioned in

26

Data Hazards Requiring Stalls

Unfortunately, not all potential data hazards can be handled by bypassing. Con-
sider the following sequence of instructions:

1d Xl=0ExX2)
sub x4,x1,x5
and X6,x1,x/
or x8,x1,x9

Time (in clock cycles) -

CC 1 CC?2 CcC3 CC4 CC5
@
S PUN— —' 88
= LD R1, 0(R2) IM L Reg - DM (—{#}— Reg :
~ : < 1 ¢ b
R O e / l_- L
=
= - \ 1: z
O DSUB R4, R, R5 IM ' Reg = —{ DM
e} : : E
==4 Eice IC=h
O . .
[0)] . :
x : .
o e
£ :
9 S
S AND R6, R1, R7 IM = Reg 2
ol 5000y _/_

OR R8, R1, R9 IM ; Reg

Figure C.7 The load instruction can bypass its results to the and and or instructions, but not to the sub, because
that would mean forwarding the result in “negative time.”

27

1d x1,0(x2) IF ID EX MEM WB

sub x4,x1, x5 IF ID EX MEM WB

and x6,x1,x/ IF ID EX MEM WB

o] it £o 00 4 P 4 IF ID EX MEM WB

1d x1,0(x2) IF ID EX MEM WB

sub x4,x1,xb5 IF ID Stall EX MEM WB

and x6,x1,x/ IF Stall ID EX MEM WB

or x8,x1,x9 Stall IF ID EX MEM WB

Figure C.8 In the top half, we can see why a stall is needed: the MEM cycle of the load produces a value that is
needed in the EX cycle of the sub, which occurs at the same time. This problem is solved by inserting a stall, as

shown in the bottom half.

28

Control (Branch) Hazards

Branch instruction IF ID EX MEM WB
Branch successor IF IF ID EX MEM WB
Branch successor+ 1 IF ID EX MEM

Branch successor+2 IF ID EX

Figure C.9 A branch causes a one-cycle stall in the five-stage pipeline. The instruction
after the branch is fetched, but the instruction is ignored, and the fetch is restarted once
the branch target is known. It is probably obvious that if the branch is not taken, the
second IF for branch successor is redundant. This will be addressed shortly.

29

Predict Not-Taken Scheme

Untaken branch instruction IF ID EX MEM WB

Instruction i+ 1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB
Instruction i +4 IF ID EX MEM WB
Taken branch instruction IF ID EX MEM WB

Instruction i+ 1 IF idle idle idle idle

Branch target IF ID EX MEM WB

Branch target + 1 IF ID EX MEM WB

Branch target + 2 IF ID EX MEM WB

Figure C.10 The predicted-not-taken scheme and the pipeline sequence when the branch is untaken (top) and
taken (bottom). When the branch is untaken, determined during ID, we fetch the fall-through and just continue. If the

branch is taken during ID, we restart the fetch at the branch target. This causes all instructions following the branch to
stall 1 clock cycle.

30

Branch Prediction

Taken
Not taken
Predict taken Predict taken
11 10
Taken
Taken Not taken
Not taken
Predict not taken Predict not taken
01 00
Taken

Not taken

Figure C.15 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a
branch that strongly favors taken or not taken—as many branches do—will be mispre-
dicted less often than with a 1-bit predictor. The 2 bits are used to encode the four states
in the system. The 2-bit scheme is actually a specialization of a more general scheme
that has an n-bit saturating counter for each entry in the prediction buffer. With an
n-bit counter, the counter can take on values between 0 and 2" — 1: when the counter
is greater than or equal to one-half of its maximum value (2" — 1), the branch is pre-
dicted as taken; otherwise, it is predicted as untaken. Studies of n-bit predictors have
shown that the 2-bit predictors do almost as well, thus most systems rely on 2-bit branch
predictors rather than the more general n-bit predictors.

Dynamic Branch Methods

e Branch Prediction Buffer

 Branch Target Buffer

Original intent of code

Loop:

fld
fadd.d
fsd
addi
bne

fo,
£4,
£4,
X1,
X1,

0(x1)

£fo, f£Z
0(x1)
x1, -8
x2, Loop

Branch Delay Slot

//
//
//
//
//

fO=array element

add scalar 1n f£Z
store result
decrement ptr 8 bytes
branch if x1/=x2

Now, change architecture to handle branch delay slot

Loop:

fld
fadd.d
addi

bne
fsd

0(x1)

£fo, fZ
x1, -8
X2, Loop
8(x1)

//
//
//
//
//
//

fO=array element

add scalar in f£2
decrement ptr 8 bytes
branch if x1/=x2

branch delay slot,

st1ll considered in loop

33

Implementing Forwarding

IENEA oo o bnauiia e S Sn b e EX/MEM R R MEMNVB -

> = I

)

....... u

"I X :

ALU [—— §

s — - Data
— M memory | | s

A~ |

Figure C.24 Forwarding of results to the ALU requires the addition of three extra
inputs on each ALU multiplexer and the addition of three paths to the new inputs.
The paths correspond to a bypass of: (1) the ALU output at the end of the EX, (2) the ALU
output at the end of the MEM stage, and (3) the memory output at the end of the
MEM stage.

T

Branch Delay Slot

Untaken branch instruction IF ID EX MEM WB

Branch delay instruction (i+1) IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB
Instruction i +4 IF ID EX MEM WB
Taken branch instruction IF ID EX MEM WB

Branch delay instruction (i+1) IF ID EX MEM WB

Branch target IF ID EX MEM WB

Branch target+ 1 IF ID EX MEM WB

Branch target +2 IF ID EX MEM WB

Figure C.11 The behavior of a delayed branch is the same whether or not the branch is taken. The instructions in
the delay slot (there was only one delay slot for most RISC architectures that incorporated them) are executed. If the
branch is untaken, execution continues with the instruction after the branch delay instruction; if the branch is taken,
execution continues at the branch target. When the instruction in the branch delay slot is also a branch, the meaning

is unclear: if the branch is not taken, what should happen to the branch in the branch delay slot? Because of this
confusion, architectures with delay branches often disallow putting a branch in the delay slot.

35

Exceptions

User Within vs.

Synchronous vs. User request maskable vs. between Resume vs.
Exception type asynchronous vs. coerced nonmaskable instructions terminate
I/O device request Asynchronous Coerced Nonmaskable Between Resume
Invoke operating system Synchronous User request Nonmaskable Between Resume
Tracing instruction Synchronous User request User maskable Between Resume
execution
Breakpoint Synchronous User request User maskable Between Resume
Integer arithmetic Synchronous Coerced User maskable Within Resume
overflow
Floating-point arithmetic Synchronous Coerced User maskable Within Resume
overflow or underflow
Page fault Synchronous Coerced Nonmaskable Within Resume
Misaligned memory Synchronous Coerced User maskable Within Resume
accesses
Memory protection Synchronous Coerced Nonmaskable Within Resume
violations
Using undefined Synchronous Coerced Nonmaskable Within Terminate
instructions
Hardware malfunctions Asynchronous Coerced Nonmaskable Within Terminate
Power failure Asynchronous Coerced Nonmaskable Within Terminate

Figure C.26 Five categories are used to define what actions are needed for the different exception types. Excep-

36

RISC-V Exceptions

1d

EX MEM WB

add

Pipeline stage

e
chis

ID EX MEM WB

Problem exceptions occurring

IF

Page fault on instruction fetch; misaligned memory access; memory
protection violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM Page fault on data fetch; misaligned memory access; memory
protection violation

WB None

Figure C.27 Exceptions that may occur in the RISCV pipeline. Exceptions raised from
instruction or data memory access account for six out of eight cases.

37

Multicycle Stages

EX

Integer unit

EX

FP/integer
multiply

MEM WB

EX

FP adder

EX

FP/integer

divider

Figure C.28 The RISC V pipeline with three additional unpipelined, floating-point,

Functional unit Latency Initiation interval
Integer ALU 0 1
Data memory (integer and FP loads) 1 1
FP add 3 1
FP multiply (also integer multiply) 6 1
FP divide (also integer divide) 24 25

Figure C.29 Latencies and initiation intervals for functional units.

38

Integer unit

EX

FP/integer multiply
M3 M4 M5

MEM WB
FP adder

A1l

FP/integer divider

Figure C.30 A pipeline that supports multiple outstanding FP operations. The FP multiplier and adder are fully
pipelined and have a depth of seven and four stages, respectively. The FP divider is not pipelined, but requires
24 clock cycles to complete. The latency in instructions between the issue of an FP operation and the use of the result
of that operation without incurring a RAW stall is determined by the number of cycles spent in the execution stages.
For example, the fourth instruction after an FP add can use the result of the FP add. For integer ALU operations, the

depth of the execution pipeline is always one and the next instruction can use the results.

39

Hazards and Forwarding in Longer Latency Pipelines

There are a number of different aspects to the hazard detection and forwarding for a
pipeline like that shown 1n Figure C.30.

1. Because the divide unit 1s not fully pipelined, structural hazards can occur.
These will need to be detected and 1ssuing instructions will need to be stalled.

2. Because the instructions have varying running times, the number of register
writes required in a cycle can be larger than 1.

3. Write after write (WAW) hazards are possible, because instructions no longer
reach WB in order. Note that write after read (WAR) hazards are not possible,
because the register reads always occur in ID.

4. Instructions can complete in a different order than they were issued, causing
problems with exceptions; we deal with this in the next subsection.

5. Because of longer latency of operations, stalls for RAW hazards will be more
frequent.

40

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
fld f4,0(x2) IF ID EX MEM WB

fmul.d f0,f4,f6 IF ID Stall M1 M2 M3 M4 M5 M6 M7 MEM WB

fadd.d f2,f0,f8 IF Stall ID Stall Stall Stall Stall Stall Stall A1 A2 A3 A4 MEM WB
fsd f2,0(x2) IF Stall Stall Stall Stall Stall Stall ID EX Stall Stall Stall MEM

Figure C.32 A typical FP code sequence showing the stalls arising from RAW hazards. The longer pipeline sub-
stantially raises the frequency of stalls versus the shallower integer pipeline. Each instruction in this sequence is

dependent on the previous and proceeds as soon as data are available, which assumes the pipeline has full bypassing
and forwarding. The fsd must be stalled an extra cycle so that its MEM does not conflict with the fadd. d. Extra

hardware could easily handle this case.

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11
fmul.d f0,f4,f6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
IF ID EX MEM WB
s IF ID EX MEM WB
fadd.d f2,f4,f6 IF ID Al A2 A3 A4 MEM WB
IF ID EX MEM WB
IF ID EX MEM WB

fld f2,0(x2) IF ID EX MEM WB

Figure C.33 Three instructions want to perform a write-back to the FP register file simultaneously, as shown in
clock cycle 11. This is not the worst case, because an earlier divide in the FP unit could also finish on the same clock.
Note that although the fmul .d, fadd.d,and f1d are in the MEM stage in clock cycle 10, only the f 1 d actually uses
the memory, so no structural hazard exists for MEM.

41

Deeper Pipelines
MIPS R4000

F S . RF EX DF DS TC . WB

% - 3)
Instruction memory Reg } Data memory | Reg

Figure C.36 The eight-stage pipeline structure of the R4000 uses pipelined instruction and data caches. The pipe
stages are labeled and their detailed function is described in the text. The vertical dashed lines represent the stage
boundaries as well as the location of pipeline latches. The instruction is actually available at the end of IS, but the tag
check is done in RF, while the registers are fetched. Thus, we show the instruction memory as operating through RF.
The TC stage is needed for data memory access, because we cannot write the data into the register until we know
whether the cache access was a hit or not.

Time (in clock cycles) -

CC1 cC2 : CC3 CC4 : CC5 cCeé : CC7 ccg : CC9 cCC10 @ CC11

: } : A
LD R1 Instruction memory s Reg ? 7 Data memoryé oef

Instruction 1 Instruction memory o Reg | = Dgta memory - |Reg

K

E E S
Instruction 2 : Instruction memory Reg } 7

= —

f f >
ADDD RZ, : Instruction memory [~ | Reg |: E 7

-

Data memoryf Reg

Data memory Reg

Figure C.37 The structure of the R4000 integer pipeline leads to a x1 load delay. A x1 delay is possible because the
data value is available at the end of DS and can be bypassed. If the tag check in TC indicates a miss, the pipeline is

backed up a cycle, when the correct data are available.
42

Floating Point

Stage Functional unit Description

A FP adder Mantissa add stage

D FP divider Divide pipeline stage

E FP multiplier Exception test stage

M FP multiplier First stage of multiplier

N FP multiplier Second stage of multiplier
R FP adder Rounding stage

S FP adder Operand shift stage

U Unpack FP numbers

Figure C.41 The eight stages used in the R4000 floating-point pipelines.

FP instruction Latency Initiation interval Pipe stages

Add, subtract 4 3 U, S+A, A+R, R+S

Multiply 8 4 U E+M,M,M, M, N, N+A, R

Divide 36 35 U, A R D*®* D+A, D+R, D+A, D+R, A, R
Square root 112 111 U,E, (A+R)'® AR

Negate 2 1 U, S

Absolute value 2 1 U, S

FP compare 3 2 U, AR

Figure C.42 The latencies and initiation intervals for the FP operations initiation intervals for the FP operations

43

Clock cycle

Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11 12
Multiply Issue U E+M M M M N N+A R
Add Issue U S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R R+S

Figure C.43 An FP multiply issued at clock 0 is followed by a single FP add issued between clocks 1 and 7. The

44

