Computer Architecture

Appendix A

Processor

Memo

(A)

Stack (B) Accumulator (C) Register-memory (D) Register-register/
load-store
Register Register

Stack Accumulator (register-memory) (load-store)

Push A Load A Load R1,A Load R1,A

Push B Add B Add R3,R1,B Load RZ2,B

Add Store C Store R3,C Add R3,R1,R2
Pop C Store R3,C

Figure A.2 The code sequence for C = A+ B for four classes of instruction sets. Note
2

Architecture Characteristics

 Number of Operands

* Types of Operands

» Memory Addressing
* Addressing Modes

* Operations

 Data Types

* Branch specifications

* |nstruction Encoding

Number and Type of Operands

(

(
2 (register-register, register-memory)

e 3 (load-store)

* Register reference

 Memory reference

Memory addressing

e Little endian e R e

* Big endian e v % - f

Data Structure

Highest
Address 3¢ ¢4 23 16 15 8 7 0 < Bitoffset

28

24
20
16
12
8
4

Byte 3 Byte 2 Byte 1 Byte0 | 0
Lowest
* Address

Byte Offset

Figure 1-1. Bit and Byte Order
From Intel |A-64 Manual

Memory Alignment

Value of three low-order bits of byte address

Width of object 0 1 2 3 4 5 6 7
1 byte (byte) Aligned |Aligned |[Aligned |Aligned |Aligned |Aligned |Aligned [Aligned
2 bytes (half word) Aligned Aligned Aligned Aligned

2 bytes (half word) Misaligned Misaligned Misaligned Misaligned

4 bytes (word) Aligned Aligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) Misaligned Misaligned
8 bytes (double word) Aligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word)

Figure A.5 Aligned and misaligned addresses of byte, half-word, word, and double-word objects for byte-
addressed computers. For each misaligned example some objects require two memory accesses to complete. Every
aligned object can always complete in one memory access, as long as the memory is as wide as the object. The figure
shows the memory organized as 8 bytes wide. The byte offsets that label the columns specify the low-order three bits
of the address.

6

Addressing Modes

Addressing
mode Example instruction Meaning When used
Register Add R4,R3 Regs[R4]« Regs[R4] When a value is in a register
+Regs[R3]
Immediate Add R4,3 Regs[R4]«Regs[R4]+3 For constants
Displacement Add R4,100(R1) Regs[R4]—Regs[R4] Accessing local variables
+Mem[100+Regs[R1]] (+ simulates register indirect, direct
addressing modes)
Register Add R4, (R1) Regs[R4]« Regs[R4] Accessing using a pointer or a
indirect +Mem[Regs[R1]] computed address
Indexed Add R3, (R1+R2) Regs[R3]« Regs[R3] Sometimes useful in array
+Mem[Regs[R1]+Regs addressing: R1 =base of array;
LR RZ =index amount
Direct or Add R1,(1001) Regs[R1]« Regs[R1] Sometimes useful for accessing
absolute +Mem[1001] static data; address constant may
need to be large
Memory Add R1,@(R3) Regs[R1]—Regs[R1] If R3 is the address of a pointer p,
indirect +Mem[Mem[Regs[R3]]] then mode yields *p
Autoincrement Add R1, (R2)+ Regs[R1]«Regs[R1] Useful for stepping through arrays
+Mem[Regs[R2]] within a loop. R2 points to start of
Regs[RZ2]«Regs[RZ2]+d array; each reference increments RZ
by size of an element, d
Autodecrement Add R1, -(R2) Regs[R2]«Regs[R2] -d Same use as autoincrement.
Regs[R1]«Regs[R1] Autodecrement/-increment can also
+Mem[Regs[R2]] act as push/pop to implement a
stack.
Scaled Add R1,100(R2)[R3] Regs[R1]—Regs[R1] Used to index arrays. May be
+Mem[100+ Regs[R2] applied to any indexed addressing

+Regs[R3] * d]

mode in some computers

Addressing mode usage

TeX | 1%
Memory indirect spice | 6%

gec A 1%

TeX (0%

Scaled spice 16%

gcc

TeX

Register indirect gpjce
gcc

TeX

Immediate Spice

gcc
TeX
spice
gcc

6%

- 24%
0o
11%

43%
39%

32%

Displacement 55%

40%

0% 10% 20% 30% 40% 50% 60%
Frequency of the addressing mode

Figure A.7 Summary of use of memory addressing modes (including immediates).

8

Displacement Addressing Mode

1 ' €66 tEEIWO

DR e e

20%

15%

10%

Percentage of displacement

5%

O 0/0 1] I I | | | 1 1

|

| SR Ry St SR SORe - T | SOnaty Sest - SHORe © Sk | 0 SR I (St Ay M R [R |

Number of bits of displacement

Immediate Addressing Mode Frequency

B Floating-point average
M Integer average

22%

Loads 230,

ALU operations 25%

. . 16%
All instructions 219%

0% % 10% 1% 20% 25% 30%

10

Percentage of immediates

45% -

Immediate Mode Bits

40% 1

35% -

30% -

25% -

20% -

15% -

Integer average

10% -~

5% -

0%

I 1 I | | I 1

4 5 6 7 8 9 10 11 12 13 14 15
Number of bits needed for immediate

11

Data Access Sizes

Double word 70%
(64 bits) 59%
Word I 0%
(32 bits) 26%

Half word |9,
(16 bits) 5%

- B Floating-point average

o tB)'};t(; 1 1% e Integer average
IS (i

0% 20% 40% 60% 80%

Figure A.11 Distribution of data accesses by size for the benchmark programs.

12

Operation Categories

Operator type

Examples

Arithmetic and
logical

Integer arithmetic and logical operations: add, subtract, and, or,
multiply, divide

Data transfer

Loads-stores (move instructions on computers with memory
addressing)

Control

Branch, jump, procedure call and return, traps

System

Operating system call, virtual memory management instructions

Floating point

Floating-point operations: add, multiply, divide, compare

Decimal

Decimal add, decimal multiply, decimal-to-character conversions

String

String move, string compare, string search

Graphics

Pixel and vertex operations, compression/decompression operations

13

Instruction Frequency

Integer average

Rank 80x86 instruction % total executed)
1 Load 22%
2 Conditional branch 20%
3 Compare 16%
4 Store 12%
5 Add 8%
6 And 6%
7 Sub 5%
8 Move register-register 4%
9 Call 1%
10 Return 1%
Total 96 %

Figure A.13 The top 10 instructions for the 80x86. Simple instructions dominate this
list and are responsible for 96% of the instructions executed. These percentages are the
average of the five SPECint92 programs.

14

Control Flow Instructions

B Floating-point average

Call/return 8% B Integer average
Jump
Conditional b h ks
ondaliaonal pranc 759,
0% 25% 50% 75% 100%

Frequency of branch instructions

15

Branch Displacement (Distance)

300 R
25% e

20 e
Integer

150 average
o ISR

Floating-point average
L R B e e, et T

Percentage of distance

L A

0% R R O B . . S, B T -.t’
| Ry Ry Sl SO (ERE R - SR SO - SO © SRy L) N0 o oy P B R | R e |- IV S | Sy | B

Bits of branch displacement

Figure A.15 Branch distances in terms of number of instructions between the target and the branch instruction.

16

Branch Evaluation Methods

Name Examples How conditionis tested Advantages Disadvantages

Condition 80x86, ARM, Tests special bits set by Sometimes condition CC 1s extra state. Condition

code (CC) PowerPC, ALU operations, 1s set for free. codes constrain the ordering of

SPARC, SuperH possibly under program instructionsbecause they pass
control information from one

instruction to a branch

Condition Alpha, MIPS Tests arbitrary register Simple Limited compare may affect

register/ with the result of a simple critical path or require extra

limited comparison (equality or comparison for general

comparison zZero tests) condition

Compare PA-RISC, VAX, Compare 1s part of the One instruction May set critical path for branch

and branch RISC-V branch. Fairly general rather than two for a instructions

compares are allowed
(greater then, less then)

branch

Figure A.16 The major methods for evaluating branch conditions, their advantages, and their disadvantages.

17

Compare Frequencies

% B Floating-point average
B Integer average

Not equal 29

16%

Equal 18%

—

0%

Greater than or equal |G 11%

0%

Greater than 0%

0
Less than or equal 44%

Less than

35%

0% 10% 20% 30% 40% 50%
Frequency of comparison types in branches

Figure A.17 Frequency of different types of compares in conditional branches.

18

Instruction Encoding Types

(B) Fixed (e.g., RISC V, ARM, MIPS, PowerPC, SPARC)

Operation Address Address
specifier field

Operation Address Address Address
specifier 1 specifier 2 field

Operation Address Address Address
specifier field 1 field 2

(C) Hybrid (e.g., RISC V Compressed (RV32IC), IBM 360/370, microMIPS, Arm Thumb2)

Operation and | Address Address S Address Address
no. of operands | specifier 1 | field 1 specifier n field n
(A) Variable (e.g., Intel 80x86, VAX)
Operation Address Address Address
field 1 field 2 field 3

19

RISC-V Registers

Register Name Use Saver
x0 Zero The constant value 0 N.A.
x1 ra Return address Caller
X2 Sp Stack pointer Callee
X3 ap Global pointer —~
X4 tp Thread pointer -

X5-x7/ t0-t2 Temporaries Caller
X8 sO/fp Saved register/frame pointer Callee

X9 sl Saved register Callee
x10-x11 al0-al Function arguments/return values Caller
x12-x17 a’l-a/ Function arguments Caller
x18-x27 s2-sll Saved registers Callee
x28-x31 t3-t6 Temporaries Caller
fO-f7 fto-ft7/ FP temporaries Caller
f8-19 fsO-fsl FP saved registers Callee
f10-f11 fa0-fal FP function arguments/return values Caller
f12-f17 faz-fa/ FP function arguments Caller
f18-127 fs2-fsll FP saved registers Callee
f28-131 ft8-ftll FP temporaries Caller

Figure 1.4 RISC-V registers, names, usage, and calling conventions. In addition to the
32 general-purpose registers (x0—x31), RISC-V has 32 floating-point registers (f0O—f31)
that can hold either a 32-bit single-precision number or a 64-bit double-precision num-
ber. The registers that are preserved across a procedure call are labeled “Callee” saved.

RISC-V Data Types

* Byte - 8 bits

* Half Word - 16 bits

 Word - 32 bits

* Double Word - 64 bits

» Single Precision FP - 32 bits
* Double Precision FP - 64 bits

RISC-V Addressing Modes

* Register
* Displacement

e Immediate

RISC-V Instruction Formats

31 25 24 2019 1514 1211 76 0
funct?7 \ rs2 rsi ‘funct3 rd opcode | R-type
imm [11:0] rs1 [funct3 rd | opcode | I-type
imm [11:5] I rs2 rs1 !funct3 imm [4:0] I opcode | S-type
imm [12]| imm [10:5] | rs2 rs1 |funct3 imm [4:1]11] \ opcode | B-type
imm [31:12] rd opcode | U-type
imm [20]10:1|11|19:12] rd | opcode | J-type

Figure 1.7 The base RISC-V instruction set architecture formats. All instructions are 32 bits long. The R format is for
integer register-to-register operations, such as ADD, SUB, and so on. The | format is for loads and immediate oper-
ations, such as LD and ADDI. The B format is for branches and the J format is for jumps and link. The S format is for
stores. Having a separate format for stores allows the three register specifiers (rd, rs1, rs2) to always be in the same
location in all formats. The U format is for the wide immediate instructions (LUI, AUIPC).

23

RISC-V Instruction Formats - Usage

Instruction
format Primary use rd rs1 rs2 Immediate
R-type Register-register Destination First source Second source
ALU instructions
I-type ALU immediates Destination First source base Value
Load register displacement
S-type Store Base register first Data source to Displacement
Compare and source store second offset
branch source
U-type Jump and link Register Target address for Target address
Jump and link destination for jump and link for jump and link
register return PC register

24

RISC-V Load-Store Instruction Examples

Instruction name
LLoad doubleword

Load word

Meaning
Regs[x1]«—Mem[80+Regs[x2]]

Regs[x1]« ¢ Mem[60+Regs[x2]11,) 32 #
Mem[60+ Regs[x2]]

Regs[x1] ¢, 0°% {HF Mem[60+Regs[x2]]

Example instruction

1d x1,80(x2)
Tw x1,60(x2)

Twu x1,60(x2)

Load word unsigned

1b x1,40(x3) Load byte Regs[x1] g (Mem[40+Regs[x311,)°° iHE
Mem[40+ Regs[x3]]
Tbu x1,40(x3) Load byte unsigned Regs[x1]«gs 0°° HF Mem[40+Regs[x3]]

Th x1,40(x3) Load half word Regs[x1] e (Mem[40+Regs[x3110)*8 Ht
Mem[40+Regs[x3]]

flw f0,50(x3) Load FP single Regs[f0] ¢ Mem[50+Reqgs[x3]] iHF 072

fld f0,50(x2) Load FP double Regs[f0] «—¢ Mem[50+Regs[x2]]

sd x2,400(x3) Store double Mem[400+Regs[x3]] 64 Regs[x2]

sw x3,500(x4) Store word Mem[500+Regs[x4]] 3, Regs[x3]32. 53

fsw f0,40(x3) Store FP single Mem[40+Regs[x3]]«+3; Regs[f0]o. 3

fsd £0,40(x3) Store FP double Mem[40+Regs[x3]]+ Regs[0]

gh: %35 502(%2) Store half Mem[502+Regs[x2]]« 6 Regs[x3]ss. .63

sb x2,41(x3) Store byte Mem[41+Regs[x3]]«g Regs[x2]se.63

25

RISC-V ALU Examples

Example

instrucmtion Instruction name Meaning

S Lo [B0 4 BS ¢80 & Add Regs[x]l]«Regs[x2]+Regs[x3]

addi x1,x2,3 Add immediate Regs[xl]«Regs[x2]+3
unsigned

Tui x1,42 Load upper Regs [x1] « 0°%HF4 27HFO
immediate

sl x1,x2,5 Shift left logical Regs[xl]«Regs[x2]<<5

3 B gk 4 B ¢8R Set less than if (Regs[x2]<Regs[x3])

Regs[xl]«1else Regs[x1]«0

Figure A.26 The basic ALU instructions in RISC-V are available both with register-
register operands and with one immediate operand. LUI uses the U-format that
employs the rs1 field as part of the immediate, yielding a 20-bit immediate.

26

RISC-V Control Flow Examples

Example instruction Instruction name Meaning

jal x1,offset Jump and link Regs[x1]«PC+4; PC—PC+ (offset<<1)

jalr x1,x2,0ffset Jump and link register Regs[x1]«PC+4; PC«—Regs[x2]+offset

beq x3,x4,offset Branch equal zero if (Regs[x3]==Regs[x4]) PC—PC + (offset<<1)
bgt x3,x4,name Branch not equal zero if (Regs[x3]>Regs[x4]) PC+~—PC+ (offset<<1)

Figure A.27 Typical control flow instructions in RISC-V. All control instructions, except jumps to an address in a
register, are PC-relative.

27

RISC-V Instruction Subset (1 of 2)

Instruction type/opcode

Instruction meaning

Data transfers

10 Dtk:8D
1h, Thu, sh

lw, Twu, Sw
1d, sd

Move data between registers and memory, or between the integer and FP;
only memory address mode is 12-bit displacement + contents of a GPR

Load byte, load byte unsigned, store byte (to/from integer registers)

Load half word, load half word unsigned, store half word (to/from integer
registers)

Load word, store word (to/from integer registers)

Load doubleword, store doubleword

Arithmetic/logical

add. addi. addw. addiw. sub.
subi, subw, subiw

0 i R 0 P T vy SRR B Sy
and, or, xor, andi, ori, xori
Tui

auipc

sll, srl, sra, sll1i, srli,
srai, sllw,slliw, srli,
srliw, srai, sraiw

mul, mulw, mulh, mulhsu,
mulhu, div,divw, divu, rem,
remu, remw, remuw

Operations on data in GPRs. Word versions ignore upper 32 bits

Add and subtract., with both word and immediate versions

set-less-than with signed and unsigned, and immediate
and, or, xor, both register-register and register-immediate

Load upper immediate: loads bits 31..12 of a register with the immediate
value. Upper 32 bits are set to 0

Sums an immediate and the upper 20-bits of the PC into a register; used for
building a branch to any 32-bit address

Shifts: logical shift left and right and arithmetic shift right, both immediate
and word versions (word versions leave the upper 32 bit untouched)

Integer multiply, divide, and remainder, signed and unsigned with support for
64-bit products in two instructions. Also word versions

28

RISC-V Instruction Subset (2 of 2)

Control

beq, bne, blt, bge, bltu, bgeu

jal,jalr

Conditional branches and jumps; PC-relative or through register

Branch based on compare of two registers, equal, not equal, less than, greater
or equal, signed and unsigned

Jump and link address relative to a register or the PC

Floating point
flw, fl1d, fsw, fsd

fadd, fsub, fmult, fiv, fsqrt,
fmadd, fmsub, fnmadd, fnmsub,
fmin, fmax, fsgn, fsgnj, fsjnx

feq, fl1t, fle
fmv.x.*, fmv.*.Xx

fcvt.*.1, fcvt.1.*, fcvt.*.
lu, fcvt.lu.*, fcvt.*.w, fcvt.
w.* fcvt.*.wu, fcvt.wu.*

All FP operation appear in double precision (.d) and single (.s)
Load, store, word (single precision), doubleword (double precision)

Add, subtract, multiply, divide, square root, multiply-add, multiply-subtract,
negate multiply-add, negate multiply-subtract, maximum, minimum, and
instructions to replace the sign bit. For single precision, the opcode 1s
followed by: .s, for double precision: .d. Thus fadd.s, fadd.d

Compare two floating point registers; result is 0 or 1 stored into a GPR
Move between the FP register abd GPR, “*” 1s s or d

Converts between a FP register and integer register, where “*” 1s S or D for
single or double precision. Signed and unsigned versions and word,
doubleword versions

29

RISC-V Variants and Extensions

Name of base

or extension Functionality

RV321 Base 32-bit integer instruction set with 32 registers

RV32E Base 32-bit instruction set but with only 16 registers; intended for
very low-end embedded applications

RV641 Base 64-bit instruction set; all registers are 64-bits, and instructions
to move 64-bit from/to the registers (LD and SD) are added

M Adds integer multiply and divide instructions

A Adds atomic instructions needed for concurrent processing; see
Chapter 5

F Adds single precision (32-bit) IEEE floating point, includes 32 32-

bit floating point registers, instructions to load and store those
registers and operate on them

D Extends floating point to double precision, 64-bit, making the
registers 64-bits, adding instructions to load, store, and operate on
the registers

Q Further extends floating point to add support for quad precision,
adding 128-bit operations

L Adds support for 64- and 128-bit decimal floating point for the
IEEE standard

C Defines a compressed version of the instruction set intended for

small-memory-sized embedded applications. Defines 16-bit
versions of common RV32I instructions

A future extension to support vector operations (see Chapter 4)

A future extension to support operations on bit fields

A future extension to support transactional memory

T H | W<

An extension to support packed SIMD instructions: see Chapter 4

RV 1281 A future base instruction set providing a 128-bit address space

