who — Pipc — we

lytes trom 'who' How
through the pipe Lo "w'

Figure 12-52 A simple pide.

System Call: im pipe (int fd [2])

pipe () creates an unnamed pipe and returns two file descuiptors, the cescrptor associated
with the "read” end of the pipe 1s stored 1 fd|0), and the descrptor associated with the
“write” end of the pipe is stered in fd1].

The following rules app’y ta processes that read from a pipe:

«If a process reads from a pipe whose write end has been closed, the read () returns a 0,
indicating end-of-input.

« If a process reads from an empty pipe whose write end is still epen, it sleeps until some
input hacomes availah’s.

« If a process trics 10 read more bytes from & pipe than arc present, ll of the current con-
tents are returmead and read) returns the number of hyes cciually read.

The following rulcs apply to processes that write 1o a pipe:

«If a process writes to a pipe whose read end has teen closed, the write fails and the
writer is sent a SIGPIPE signal. The default action of this signal is to terminate the
WrilCr.

«If a process writes fewer bytes to a pipe than the pipe can hold, the write () is guaran-
teed ‘0 be atomic; that is, the writer process will complete its system call without being
preempted by another process. If 4 process writes more by s to a pipe than the pipe can
held, no similar guarantees of atomicity apply.

Since access 1o an unnamed pipe is via the file descriptor mechanism, typically only the pro-
cess that creates a pipe and its descendants may use the pipe.? Ise2k () has nc meaning when
appliec to a pipe.

If the kermel cannaet allocate enough space far a new pipe, pipe () returns -1; otherwise,
it returns 0.

1. In advinced situctions, itis actuclly possible o pass file Cescriptors to unrelited processes vic a pipe.

Figure 12-53 Descriplion of the pioe () system call.

Write end
fd [0] o
fd [1] pe

Read end

Figure 12-54 An unnamed pipe.

1. The parent process creates an unnamed pipe using pipe ().

2. The parent process forks.
3. The writer closes its read end of the pipe, and the designated reader closes its write end of

the pipe.
4. The processes communicate by using write () and read () calls.

5. Each process closes its active pipe descriptor when finished with it.

1. Server creates a named "Name"”

socket.
—_—
.
2. Client creates an unnamed
" "
socket and requests a Name
connection. -
—

3. Client makes a connection.
Server retains original
named socket.

Completed
connection

Figure 12-56 The socket connection.

Domains The domain of a socket indicates where the server and client sockets may reside; the
domains that are currently supported include:

*PF_LOCAL (the clients and server must be in the same machine, also called PF_UNIX)
* PF_INET (the clients and server are on the network)
* PF_INETS6 (the clients and server are on an IPv6 network)

Other domains are listed in the socket man page. PF stands for “Protocol Family.” This book
contains examples of PF_LOCAL and PF_INET sockets.

Types The type of a socket determines the type of communication that can exist between the
client and server; the two main types that are currently supported are:

« SOCK_STREAM: sequenced, reliable, two-way connection based, variable-length
streams of bytes
* SOCK_DGRAM: like telegrams; connectionless, unreliable, fixed-length messages

Other types that are either in the planning stages or implemented only in some domains include:

* SOCK_SEQPACKET: sequenced, reliable, two-way connection based, fixed-length pack-

ets of bytes
* SOCK_RAW: provides access to internal network protocols and interfaces

Name Meaning

socket Creates an unnamed socket.

bind Gives the socket a name.

listen Specifies the maximum number of pending connections.

accept Accepts a socket connection from a client.

Figure 12-57 System calls used by a typical Linux daemon process.

System Call: int socket (int domain, int type, int protocol)

socket () creates an unnamed socket of the specified domain, type, and protocol. The legal
values of these parameters were described earlier in this section.

If socket () is successful, it returns a file descriptor associated with the newly created
socket; otherwise, it returns -1.

Figure 12-58 Description of the socket () system call.

System Call: int bind (int fd, const struct sockaddr* address, size_t addressLen)

bind () associates the unnamed socket represented by file descriptor fd with the socket
address stored in address. addressLen must contain the length of the address structure. The
type and value of the incoming address depend on the socket domain.

If the socket is in the PF_LOCAL domain, a pointer to a sockaddr_un structure
(defined in “/usr/include/sys/un.h”) must be cast to a (sockaddr*) and passed in as address.
This structure has two fields that should be set as follows:

FIELD ASSIGN THE VALUE
sun_family PF_LOCAL
sun_path the full pathname of the socket (absolute or relative), up to 108 characters long

If the named PF_LOCAL socket already exists, an error occurs, so it’s a good idea to
unlink () a name before attempting to bind to it.

If the socket is in the PF_INET domain, a pointer to a sockaddr_in structure must be
cast to a (sockaddr*) and passed in as address. This structure has four fields, which should
be set as follows:

FIELD ASSIGN THE VALUE

sin_family PF_INET

sin_port the port number of the Internet socket

sin_addr a structure of type in_addr that holds the Internet address
sin_zero leave empty

For more information about Internet ports and addresses, please consult the Internet-specific
part of this section.
If bind () succeeds, it returns a 0; otherwise, it returns -1.

Figure 12-59 Description of the bind () system call.

System Call: int listen (int fd, int queueLength)

listen () allows you to specify the maximum number of pending connections on a socket.
Right now, the maximum queue length is 5. If a client attempts a connection to a socket
whose queue is full, it is denied.

Figure 12-60 Description of the listen () system call

System Call: int accept (int fd, struct sockaddr* address, int* addressLen)

accept () listens to the named server socket referenced by fd and waits until a client connec-
tion request is received. When this occurs, accept () creates an unnamed socket with the same
attributes as the original named server socket, connects it to the client’s socket, and returns a
new file descriptor that may be used for communication with the client. The original named
server socket may be used to accept more connections.

The address structure is filled with the address of the client, and is normally only used
in conjunction with Internet connections. The addressLen field should be initially set to point
to an integer containing the size of the structure pointed to by address. When a connection is
made, the integer that it points to is set to the actual size, in bytes, of the resulting address.

If accept () succeeds, it returns a new file descriptor that may be used to talk with the
client; otherwise, it returns -1.

Figure 12-61 Description of the accept () system call.

Name Meaning

socket Creates an unnamed socket.

connect Attaches an unnamed client socket to a named server socket.

Figure 12-62 System calls used by a typical Linux client process.

System Call: int connect (int fd, struct sockaddr* address, int addressLen)

connect () attempts to connect to a server socket whose address is contained within a struc-
ture pointed to by address. If successful, fd may be used to communicate with the server’s
socket. The type of structure that address points to must follow the same rules as those stated
in the description of bind ():

« If the socket is in the PF_LOCAL domain, a pointer to a sockaddr_un structure must
be cast to a (sockaddr¥*) and passed in as address.

« If the socket is in the PF_INET domain, a pointer to a sockaddr_in structure must be
cast to a (sockaddr¥*) and passed in as address.

addressLen must be equal to the size of the address structure.
If the connection is made, connect () returns 0. If the server socket doesn’t exist or its
pending queue is currently filled, connect () returns -1.

Figure 12-63 Description of the connect () system call.

Library Function: in_addr_t inet_addr (const char* string)

inet_addr () returns the 32-bit IP address that corresponds to the A.B.C.D format string. The
IP address is in network byte order.

Figure 12-64 Description of the inet_addr () library function.

System Call: int gethostname (char* name, int nameLen)

gethostname () sets the character array pointed to by name of length nameLen to a null-
terminated string equal to the local host’s name.

Figure 12-65 Description of the gethostname () system call.

Library Function: struct hostent* gethostbyname (const char* name)

gethostbyname () searches the “/etc/hosts” file (and/or DNS database if the host is a DNS cli-

ent) and returns a pointer to a hostent structure that describes the file entry associated with
the string name.

If name 1s not found in the “/etc/hosts” file, NULL is returned.

Figure 12-66 Description of the gethostbyname () library function.

Library Function: char* inet_ntoa (struct in_addr address)

inet_ntoa () takes a structure of type in_addr as its argument and returns a pointer to a string
that describes the address in the format A.B.C.D.

Figure 12-67 Description of the inet_ntoa () library function.

Library Function: void memset (void* buffer, int value, size_t length)

memset () fills the array buffer of size length with the value of value.

Figure 12-68 Description of the memset () library function.

Library Function: void bzero (void* buffer, size_t length)

bzero () fills the array buffer of size length with zeroes (ASCII NULL).

Figure 12-69 Description of the bzero () library function.

Library Function: in_addr_t htonl (in_addr_t hostLong)
in_port_t htons (in_port_t hostShort)
in_addr_t ntohl (in_addr_t networkLong)
in_port_t ntohs (in_port_t networkShort)

Each of these functions performs a conversion between a host-format number and a net-
work-format number. For example, htonl () returns the network-format equivalent of the
host-format unsigned long hostLong, and ntohs () returns the host-format equivalent of the
network-format unsigned short networkShort.

Figure 12-70 Description of the htonl (), htons (), ntohl (), and ntohs () library functions.

int serverFd; /* Server socket

struct sockaddr_in serverINETAddress; /* Server Internet address */
struct sockaddr* serverSockAddrPtr; /* Pointer to server address */
struct sockaddr_in clientINETAddress; /* Client Internet address */
struct sockaddr* clientSockAddrPtr; /* Pointer to client address */
int port = 13; /* Set to the port that you wish to serve */

int serverlLen; /* Length of address structure */

serverFd = socket (PF_INET, SOCK_STREAM, DEFAULT_PROTOCOL);/* Create */
serverLen = sizeof (serverINETAddress); /* Length of structure */

bzero ((char*) &serverINETAddress, serverLen); /* Clear structure */
serverINETAddress.sin_family = PF_INET; /* Internet domain */
serverINETAddress.sin_addr.s_addr = htonl (INADDR_ANY);/* Accept all */

serverINETAddress.sin_port = htons (port); /* Server port number */

When the address is created, the socket is bound to the address, and its queue size is specified in
the usual way:

serverSockAddrPtr = (struct sockaddr*) &serverINETAddress;
bind (serverFd, serverSockAddrPtr, serverlLen);
Tisten (serverFd, 5);

clientLen = sizeof (clientINETAddress);
clientSockAddrPtr = (struct sockaddr*) clientINETAddress;
clientFd = accept (serverFd, clientSockAddrPtr, &clientLen);

Port # / Layer Name Comment

1 tcpmux TCP port service multiplexer

5 re Remote Job Entry

7 echo Echo service

9 discard Null service for connection testing

11 systat System Status service for listing connected ports

13 daytime Sends date and time to requesting host

17 qotd Sends quote of the day to connected host

18 msp Message Send Protocol

19 chargen Character Generation service; sends endless stream of characters
20 ftp-data FTP data port

21 ftp File Transfer Protocol (FTP) port; sometimes used by File Service Protocol (FSP)
22 ssh Secure Shell (SSH) service

23 telnet The Telnet service

25 smtp Simple Mail Transfer Protocol (SMTP)

37 time Time Protocol

39 rip Resource Location Protocol

42 nameserver Internet Name Service

43 nicname WHOIS directory service

49 tacacs Terminal Access Controller Access Control System for TCP/IP based authentication and access

50 re-mail-ck Remote Mail Checking Protocol

53 domain domain name services (such as BIND)

63 whois++ WHOIS++, extended WHOIS services

67 bootps Bootstrap Protocol (BOOTP) services; also used by Dynamic Host Configuration Protocol (DHCP)
68 bootpc Bootstrap (BOOTP) client; also used by Dynamic Host Control Protocol (DHCP) clients
69 tftp Trivial File Transfer Protocol (TFTP)

70 gopher Gopher Internet document search and retrieval

71 netrjs-1 Remote Job Service

72 netrjs-2 Remote Job Service

73 netrjs-3 Remote Job Service

73 netrjs-4 Remote Job Service

79 finger Finger service for user contact information

80 http HyperText Transfer Protocol (HTTP) for World Wide Web (WWW) services

88 kerberos Kerberos network authentication system

95 supdup Telnet protocol extension

101 hostname Hostname services on SRI-NIC machines

102/tcp iso-tsap ISO Development Environment (ISODE) network applications

105 csnet-ns Mailbox nameserver; also used by CSO nameserver

