Shell Commands

This section descnbes the following shell commands, listed in alphabetical order:

alias for..do..done readonly

bg function return

builtin history select..do.done
case..in..esac if..then. elif. .then..else. fi set

ed jobs source

declare kill trap

dirs local unalias

env popd unset

export pushd until..do..done

fg read while..do..done

Shell Variables

Syntax Action

Sname Replaced by the value of name.

$(name}) Replaced by the value of name. This form is useful if the expression is imme-
diately followed by an alphanumeric that would otherwise be interpreted as
part of the variable name.

$ verb=sing ...assign a variable.
$ echo I like $verbing ...there's no variable "verbing".
I Tike

$ echo I 1ike ${verb}ing ...now it works.
I Tike singing
S

Shell command: declare [-ax| [listname)

If the named vanable does not already exist, it is created. If an array name is not specified
when -a is used, declare will display all currently defined arrays and their values. If the -x
option is used, the variable is exported to subshells. declare wntes its output in a format that
can be used again as input commands. This is useful when you want to create a script that sets
variables as they are set in your current environment.

Figure 6-5 Example of the declare shell command.

$ declare -a teamnames

$ teamnames [0]="Dallas Cowboys"

$ teamnames[1]="Washington Redskins"
S teamnames [2]="New York Giants"

Shell Command: read | variable |+

read reads one line from standard input and then assigns successive words from the line to the
specified variables. Any words that are left over are assigned to the last-named variable.

Figure 6-8 Description of the read shell command.

$ cat script.sh ... list the script.
echo "Please enter your name: \c"

read name # read just one variable.
echo your name 1is Sname # display the variable.

$ bash script.sh ...run the script.
Please enter your name: Graham Walker Glass

your name is Graham Walker Glass ...whole 1ine was read.
$

$ cat script.sh ...list the script.
echo "Please enter your name: \c"

read firstName lastName # read two variables.

echo your first name is S$firstName
echo your last name is S$lastName

$ bash script.sh ...run the script.
Please enter your name: Graham Walker Glass

your first name is Graham ...fFirst word.
your last name is Walker Glass ...the rest.

$ bash script.sh ...run it again.
Please enter your name: Graham

your first name is Graham ...fFirst word.
your last name is ...only one.

$

Shell Command: export | variable |+

export marks the specified variables for export to the environment. If no vanables are speci-
fied, a list of all the variables marked for export during the shell session is displayed.

Figure 6-9 Description of the export shell command.

Utility: env | variable=value }* | command |

env assigns values to specified environment variables, and then executes an optional com-
mand using the new environment. If vanables or command are not specified, a list of the cur-

rent environment is displayed.

Figure 6-10 Description of the env command.

Value

$- The current shell options assigned from the command line or by the built-
in set command-—discussed later.

$S The process 1D of this shell.

$! The process ID of the last back ground command.

S# The number of positional parameters.

$? The exit value of the last command.

S@ An individually quoted list of all the positional parameters.

S_ The last parameter of the previous command.

$SBASH The full pathname of the Bash executable.

$BASH_ENV Location of Bash's startup file (default is ~/.bashrc).

$SBASH_VERSINFO

A read-only array of version information.

$BASH_VERSION

Version string.

Figure 6-13 Bash predefined variables. (Part 1 of 3)

Name Value

$SDIRSTACK Array defining the directory stack (discussed later).

SENV If this variable is not set, the shell searches the user’s home directory for
the “.profile” startup file when a new login shell is created. If this variable
is set, then every new shell invocation runs the script specified by ENV.

SEUID Read-only value of effective user ID of user running Bash.

SHISTFILE Location of file containing shell history (default ~/.bash_history).

SHISTFILESIZE Maximum number of lines allowed in history file (default is 500).

SHISTSIZE Maximum number of commands in history (default is 500).

SHOSTNAME Hostname of machine where Bash is running.

SHOSTTYPE Type of host where Bash is running.

SIFS When the shell tokenizes a command line prior to its execution, it uses the
characters in this variable as delimiters. IFS usually contains a space, a
tab, and a newline character.

SLINES Used by select to determine how to display the selections.

SMAILCHECK How often (seconds) to check for new mail.

SOLDPWD The previous working directory of the shell.

SOSTYPE Operating system of machine where Bash is running.

SPPID The process ID number of the shell’s parent.

SPPID Read-only process ID of the parent process of Bash.

$PS1 This contains the value of the command-line prompt, and is $ by default.
To change the command-line prompt, simply set PS1 to a new value.

$PS2 This contains the value of the secondary command-line prompt that is dis-
played when more input is required by the shell, and is > by default. To
change the prompt, set PS2 to a new value.

$PS3 The prompt used by the sefect command, #? by default.

SPWD The current working directory of the shell.

SRANDOM A random integer.

SREPLY Set by a select command.

Figure 6-13 Bash predefined variables. (Part 2 of 3)

Shell Command: alias [-p| [word|=string])

If you alias a new command word equal to string, then when you type the command word the
string will be used in its place (and any succeeding arguments will be appended to string) and
the command will be evaluated. In the usage “alias word™ any alias defined for word will be
printed. Its simplest usage “alias™ will print all defined aliases. If the -p argument is used, the
aliases are printed in a format suitable for input to the shell (so if you've manually set up
aliases you like, you can write them to a file to include in your .bashre file).

Figure 6-14 Description of the afias shell command.

S alias dir="1s -aF"

S dir

./ main2.c p.reverse.c reverse.h
../ main2.o0 palindrome.c reverse.old
S dir *.c

main2.c p.reverse.c palindrome.c
$

Shell Command: history [-c| [n)

Print out the shell’s current command history. If a numeric value n is specified, show only the
last n entries in the history list. If “¢™ is used, clear the history list.

Figure 6-16 Description of the history shell command.

Form Action

1 Replaced with the text of the last command.

'number Replaced with command number number in the history
list.

L-number Replaced with the text of the command number com-
mands back from the end of the list (-1 is equivalent to
).

| prefix Replaced with the text of the last command that started
with prefix.

!2substring? Replaced with the text of the last command that contained
substring.

Figure 6~-17 Command re-execution metacharacters in Bash.

Figure 6-21

Tilde sequence Replaced by
~ SHOME

~user home directory of user

~I pathname SHOME/pathname

~+ SPWD (current working directory)

SOLDPWD (previous working directory)

Tilde substitutions in Bash.

((operation))

Figure 6-24 Syntax of an arithmetic operation.

+ - Addition, subtraction.

++ - Increment. decrement.

* I % Multiplication, division, remainder.
" Exponentiation.

Figure 6-25 Arithmetic operators.

<= >= < > Less than or equal to, greater than or equal to, less than,
greater than comparisons.

= I= Equal. not equal

! Logical NOT.

&& Logical AND.

I Logical OR.

Figure 6-27 Arithmetic conditional operators.

$ cat divisors.sh
#! /bin/bash

#
declare -i testval=20
declare -i count=2 # start at 2, 1 always works

while ((Scount <= Stestval)); do
((result = Stestval % Scount))
if ((Sresult == 0)); then # evenly divisible
echo " Stestval is evenly divisible by Scount™
fi
((count++))
done
$ bash divisors.sh
20 is evenly divisible by 2
20 is evenly divisible by 4
20 is evenly divisible by 5
20 is evenly divisible by 10
20 is evenly divisible by 20

-a file True if the file exists.
-b file True if the file exists and is a block-oriented special file.
-c file True if the file exists and is a character-oriented special file.
-d file True if the file exists and is a directory.
-¢ file True if the file exists.
-f file True if the file exists and is a regular file.
-g file True if the file exists and its “set group ID" bit is set.
-p file True if the file exists and is a named pipe.
- file True if the file exists and is readable.
-s file True if the file exists and has a size greater than zero.
‘tfd True if the file descriptor is open and refers to the terminal.
-u file True if the file exists and its “set user ID" bit is set.
-w file True if the file is writable.
-X file True if the file exists and is executable.
-0 file True if the file exists and is owned by the effective user ID of the user.
-G file True if the file exists and is owned by the effective group ID of the user.
-L file True if the file exists and is a symbolic link.
-N file True if the file exists and has been modified since it was last read.
-S file True if the file exists and is a socket.

filel -nt file2

True if filel is newer than file2.

filel ~ot file2

True if filel is older than file2.

filel -ef file2

True if file] and file2 have the same device and inode numbers.

Figure 6-29 File-oriented conditional operators. (Part 2 of 2)

$ cat owner.sh
#! /bin/bash
#

if [-0 /etc/passwd]; then

echo "you are the owner of /etc/passwd."
else

echo "you are NOT the owner of /etc/passwd."

i

Shell command: case
case word in
pattern { | pattern }*) commands :;

esac

Execute the commands specified by commands when the value of word matches the pattern
specified by pattern. The *)” indicates the end of the list of patterns o match. The ;" is
required to indicate the end of the commands to be executed.

Figure 6-30 Description of the case shell command.

case ${teamname[$index]} 1in
"Dallas Cowboys") echo "Dallas, TX" ;;

"Denver Broncos") echo "Denver, CO" ;;
"New York Giants"|"New York Jets") echo "New York, NY";;

*) echo "Unknown Tocation" ;;
esac

#!/bin/bash
echo menu test program

stop=0 # reset loop termination flag.
while test S$stop -eq 0 # loop until done.
do
cat << ENDOFMENU # display menu.
1 : print the date.
2, 3: print the current working directory.
4 :oexit
ENDOFMENU
echo
echo -n '"your choice? ' # prompt.
read reply # read response.
echo
case Sreply 1in # process response.
"1")
date # display date.
H2 " I H3l|)
pwd # display working directory.
"4")
stop=1 # set loop termination flag.
*) # default.
echo illegal choice # error.
esac
echo
done

Here's the output from the “menu.sh™ scrpt:

S bash menu.sh
menu test program

1 : print the date.
2, 3: print the current working directory.
4 :oexit

your choice? 1
Thu May 5 07:09:13 CST 2005

1 : print the date.
2, 3: print the current working directory.
4 @ exit

Shell command: if

if test! ; then
commands!;

[elif res12; then
commands2;)

[else commands3;)

fi

test] 1s a conditional expression (discussed above), which, if true, causes the commands speci-
fied by commandsl 10 be executed. If rest/ tests false, then if an “elif” structure is present, the
next test, rest2, i1s evaluated (“else if”"). If rest2 evaluates to true, then the commands in
commands2 are executed. The “else™ constructis used when you always want to run commands

after a test evaluated as false.

Figure 6-31 Description of the if shell command.

Shell command: for
for name in word | word }*

do

commands
done

Perform commands for each word in list with $name containing the value of the current word.

Figure 6-32 Description of the forshell command.

Shell commands: while/until
while rest
do
commands
done

until rest
do

commands
done

In a while statement, perform commands as long as the expression test evaluates (o true. In an
until statement, perform commands as long as the expression fest evaluates to false (i.e., until
test s true).

Figure 6-33 Description of the while and until shell commands.

$ cat until.sh
x=1

until [$x -gt 3]
do

echo x = $x
((x=8x+1))
done

$ bash until.sh
Xx =1
X =2
X =3
S

$ cat multi.sh

...1list the script.

...execute the script.

...list the script.

if [$# -1t 1]; then
echo "Usage: multi number"

exit
fi
x=1

while [$x -le $1]

do
y=1

while [Sy -le $1]

do

(C entry = $x * Sy))
echo -e -n "Sentry\t"

((y=8y+1))

done
echo
((x=8%x+1))
done
S bash multi.sh 7

1 2 3
2 4 6
3 6 9
4 8 12
5 10 15
6 12 18
7 14 21

set outer loop value
outer Tloop

set inner loop value

generate one table entry

update inner loop count

blank Tine
update outer Toop count

...execute the script.

4
8

12
16
20
24
28

5 6 7

10 12 14
15 18 21
20 24 28
25 30 35
30 36 42
35 42 49

select name [in {word }+ |
do

list
done

Figure 6-41 Description of the select shell command.

$ cat newmenu.sh ...1ist the script.

echo menu test program
select reply in "date" "pwd"
do
case Sreply in
"date")
date
"pwd")
pwd
"exit")
break
*) LI]
echo illegal choice
esac
done
$ sh newmenu. sh
menu test program
1) date
2) pwd
3) pwd
4) exit
#? 1
Fri May 6 21:49:33 CST 2005
#? 5
illegal choice
#7 4
$

IUp\Vd" "exi t"

...execute the script.

select name [in {word }+ |
do

list
done

Figure 6-41 Description of the select shell command.

Shell Command: g | Yjob |

fe resumes the specified job as the foreground process. If no job is specified, the last-
referenced job is resumed.

Figure 6-49 Description of the fg shell command.

