Basic UNIX Commands

Utilities

This section introduces the following utilities, listed in alphabetical order:

—cancel head my
cat - newgarp
chgrp “pr- passwd
chmod “pror pwd
chown “pre— rm
clear —pbat rmdir
cp Is by —
date —Trrar— tail

—eETes man tset
frke— mkdir S
groups more WC

1/26

Logging In

Your login might look slightly different,
depending on how you are connecting. The

basic idea is that you must enter a USERID
and PASSWORD.

Fedora Core release 2 (Tettnang)
Kernel 2.6.5-1.358 on an 1686

bluenote Tlogin: ables

Password: ...what I typed here is secret and doesn't show.

Last login: Sun Feb 15 18:33:26 from dialin
$

$ is the command prompt as used in the book.
Yours might look different, and can be changed.

2 /26

I The shell

* The “shell” is the name of the program that
allows you to type in commands and execute
them

* There are several different shells - similar,
but different in detail.

 Sometimes called a “command interpreter”

 We will use one that is the most popular on
Linux and Macs: bash (“Bourne Again Shell”)

 Others are:

- sh (the original Bourne shell)
- ksh (Korn shell)
- csh (C shell) 3126

Logging Out

$ "D ...I'm done!
Fedora Core release 2 (Tettnang)
Kernel 2.6.5-1.358 on an 1686

Or type exit

4/26

Home (login) directory

home bin

olass tim
@ _ The glass login
h Korn shell

Figure 3-8 The login shell starts at the user’s home directory.

Utility: pwd

Prints the current working directory.

Figure 3-7 Description of the pwd command.

5/26

Utility: passwd

passwd allows you to change your password. You are prompted for your old password and
then twice for the new one (since what you type isn't shown on the screen, you would not
know 1f you made a typo). The new password may be stored in an encrypted form in the pass-
word file “/etc/passwd™ or in a “shadow” file (for more security) depending on which was
selected during the installation of your Linux system.

Figure 3-5 Description of the passwd command.

Here’s an example, with the passwords shown. Note that you wouldn’t normally be able to
see the passwords, as Linux turns off the keyboard echo when you enter them.

$ passwd

Changing password for user ables.

Changing password for ables

(current) UNIX password: penguin ... poor choice.
New UNIX password: CGWK145W ... better choice.
Retype new UNIX password: GWK145W

passwd: all authentication tokens updated successfully.

$

6/26

Utility: date [yymmddhhmm | .55] |

Without any arguments, date displays the current date and time. If arguments are provided,
date sets the date to the supplied setting, where yy 1s the last two digits of the year, the first
mm 1s the number of the month, dd 1s the number of the day, hh 1s the number of hours (use
the 24-hour clock), and the last mm 1s the number of minutes. The optional ss is the number

of seconds. Only a super-user may set the date.

Figure 3-1 Description of the date command.

Utility: clear

This utility clears your screen.

Figure 3-2 The clear command.

7126

I Quick Help: man

Utility: man | section | word
man -k kevword

The manual pages are online copies of the Linux documentation, which is divided into eight
or nine sections, depending on your Linux distribution. They contain information about utili-
ties, system calls, file formats, and shells. When man displays help about a given utility, it
indicates in which section the entry appears.

The first usage of man displays the manual entry associated with word. If no section

number 1s specified, the first entry that it finds 1s displayed.
The second usage of man displays a list of all the manual entries that contain kevword.

Figure 3-3 The man command.

8 /26

I mahn Sections

The typical division of topics in manual page sections 1s as follows:

User Commands

System Calls

Library Functions

Special Files

File Formats

Games

Miscellaneous

System Administration and Privileged Commands
Kernel Interfaces (not included 1n all distributions)

e AR R

9/26

I Listing files

Utility: Is -adglsFGR | fileName }* | directorvName }*

With no arguments at all, Is lists all of the files in the current working directory in alphabet-
ical order, excluding files whose name starts with a period. The -a option causes such files
to be included in the lListing. Files that begin with a period are sometimes known as “hid-
den” files. To obtain a lising of directories other than the current directory, place their
names after the options. To obtain listings of specific files, place their names after the
options. The -d option causes the details of the directories themselves to be listed, rather
than their contents. The -g option lists a file’s group. The -l option generates a long listing,
including permission flags, the file’s owner, and the last modification time. The -s option
causes the number of disk blocks that the file occupies to be included in the listing (a block
is typically between 512 and 4K bytes). The -F option causes a character to be placed after
the file’s name to indicate the type of the file: * means an executable file, / means a direc-
tory file, @ means a symbolic link, and = means a socket. The -G option causes group
information to be omitted from the histing. The -R option recursively lists the contents of a
directory and its subdirectories.

Figure 3-14 Description of the Is command.

10/ 26

$ Is ... 11st all files in current directory.

heart
$ 1s -1G heart ...long 1isting of "heart'.
-rw-r--r-- 1 glass 106 Jan 30 19:46 heart
$ _
Field # Field value Meaning
1 “I'W-I--1-- The type and permission mode of the file, which indicates who can
read, write, and execute the file.
2 1 The hard link count (discussed much later in this book).
3 glass The usermmame of the owner of the file.
4 106 The size of the file (in bytes).
5 Jan 30 19:46 The time that the file was last modified.
6 heart The name of the file.

Figure 3-15 Description of output from the Is command.

$ Is -alFs ...extra-long listing of current dir.
total 3 ...total number of blocks of storage.

1 drwxr-xr-x 3 glass cs 512 Jan 30 22:52 ./

1 drwxr-xr-x 12 root cs 1024 Jan 30 19:45 ../

1 -rw-r--r-- 1 glass cs 106 Jan 30 19:46 heart
$

11/26

home bin

‘ myFile myFile

ol ass tim

Figure 3-9 Different files may have the same name.

File Absolute PathName

A /home/glass/myFile

B /home/myFile

C /bin/myFile

Figure 3-10 Absolute pathnames.

12 /26

Field Meaning

current directory

parent directory

Figure 3-11 Current and parent directories.

File Relative Pathname
A myFile
B /myFile
C A bin/myFile

Figure 3-12 Relative pathnames.

13/26

$ 1s -1sF heart.final
1 -rw-r--r-- 1 glass c¢s 213 Jan 31 00:12 heart.final
$

Each field 1s the value of a file attribute, described by the Figure 3-33.

Field # Field value Meaning
1 1 The number of blocks of physical storage occupied by the file.
2 -I'W-r=--1-- The type and permission mode of the file—which indicates who can

read, write, and execute the file.

3 | The hard link count (discussed in Chapter 4, “GNU Utilities for Power
Users™).

4 class The username of the owner of the file.

5 Ccs The group name of the file.

6 213 The size of the file, in bytes.

7 Jan 31 00:12 The date and time that the file was last modified.

8 heart.final The name of the file.

Figure 3-33 File attributes.

14 /26

User (owner)

Group Others

rw- r-- r--

Read permission Write permission Execute permission

I W X

Figure 3-36 File permissions.

Directory file

Special file

The process may read the
directory (i.e., list the names
of the files that it contains).

The process may read from
the file using the read () sys-
tem call.

Regular file
read The process may access the
contents.
write The process may change
the contents.

The process may add or
remove files to/from the
directory.

The process may write to the
file using the write () system
call.

execute The process may execute
the file (which only makes
sense if it’s a program).

The process may access files
in the directory or any of its
subdirectories.

No meaning.

Figure 3-37 Permission meanings for file types.

15/26

Character File type

- regular file

d directory file

b buffered (block-oriented) special file (such as a disk drive)

C unbuffered (character-oriented) special file (such as a terminal)
1 symbolic link

P pipe

S socket

Figure 3-34 File types.

16/ 26

I Typing files

Utility: cat -n { fileName }*

The cat utility takes its input from standard input or from a list of files and displays them to
standard output. The -n option adds line numbers to the output. cat is short for “concatenate,”
which means “to connect in a series of links.”

Figure 3-13 Description of the cat command.

$ cat heart ...l1ist the contents of the 'heart' file.
I hear her breathing,

I'm surrounded by the sound.

Floating in this secret place,

I never shall be found.

$

Utilitv: more -f [+lineNumber] { fileName }*

The more utility allows you to scroll through a list of files, one page at a time. By default,
each file 1s displayed starting at line 1, although the + option may be used to specify the start-
ing line number. The -f option tells more not to fold long lines. After each page is displayed,
more displays the message “-- More --"" to indicate that it’s waiting for a command. To list
the next page, press the space bar. To list the next line, press the Enter key. To quit from
more, press the g key. To obtain help on the multitude of other commands, press the h key.

17 /26

Figure 3-16 Description of the more command.

Utility: head -n { fileName }*

The head utility displays the first n lines of a file. If n 1s not specified, it defaults to 10. If more
than one file 1s specified, a small header identifying each file is displayed before its contents.

Figure 3-17 Description of the head command.

Utility: tail -n { fileName }*

The tail utility displays the last n lines of a file. If n 1s not specified, it defaults to 10. If more
than one file 1s specified, a small header identifying each file is displayed before its contents.

Figure 3-18 Description of the tail command.

18 /26

I File Operations

Utilitv: mv -1 oldFileName newFileName
my -1 {fileName}* directorvName

my -i oldDirectoryName newDirectoryName

The first form of mv renames oldFileName as newFileName. If the label newFileName
already exists, it is replaced. The second form allows you to move a collection of files to a
directory, and the third form allows you to move an entire directory. None of these options
actually moves the physical contents of a file if the destination location is within the same file
system as the original; instead, they just move labels around the hierarchy. mv is therefore a
very fast utility. The -i option prompts you for confirmation if new File Name already exists.

Figure 3-19 Description of the mv command.

Utilitv: ep -1 old FileName newFileName
cp -ir { fileName }* directorvName

The first form of ep copies oldFileName to newFileName. 1f the label newFileName already
exists, it is replaced. The -i option prompts you for confirmation if newFile Name already
exists. The second form of cp copies a list of files into directorvName. The -r option causes
any source files that are directories to be recursively copied, thus copying the entire directory
structure.

Figure 3-23 Description of the cp command. 19/ 26

Utility: rm -fir {fileName} *

The rm utility removes a file’s label from the directory hierarchy. If the filename doesn’t
exist, an error message is displayed. The -i option prompts the user for confirmation before
deleting a filename; press y to confirm, and n otherwise. If fileName is a directory, the -r
option causes all of its contents, including subdirectories, to be recursively deleted. The -f

option inhibits all error messages and prompts.

Figure 3-25 Description of the rm command.

Utility: we -lwc { fileName }*

The we utility counts the lines, words, and/or characters in a list of files. If no files are speci-
fied, standard input is used instead. The -l option requests a line count, the -w option requests
a word count, and the -¢c option requests a character count. If no options are specified, then all
three counts are displayed. A word is defined by a sequence of characters surrounded by tabs,
spaces, or newlines.

Figure 3-32 Description of the we command.

20/ 26

I Directory Operations

Utilitv: mkdir [-p| newDirectorvName

The mkdir utility creates a directory. The -p option creates any parent directories in the new-
DirectoryName pathname that do not already exist. If newDirectoryName already exists, an
error message is displayed and the existing file is not altered in any way.

Figure 3-20 Description of the mkdir command.

Shell Command: cd | directorviName |

The cd (change directory) shell command changes a shell’s current working directory to be
directoryName. If the directoryName argument is omitted, the shell is moved to its owner’s

home directory.

Figure 3-21 Description of the cd shell command.

Utility: rmdir { directoryName }+

The rmdir utility removes all of the directories in the list of directory names. A directory
must be empty before it can be removed. To recursively remove a directory and all of its con-
tents, use the rm utility with the -r option (described shortly).

Figure 3-24 Description of the rmdir command. 21726

I File Groups

Utilitv: chgrp -R groupname { fileName }*

The chgrp utility allows a user to change the group of files that he/she owns. A super-user
can change the group of any file. All of the files that follow the groupname argument are
affected. The -R option recursively changes the group of the files in a directory.

Figure 3-39 Description of the chgrp command.

Utility: groups | userld |

When invoked with no arguments, the groups utility displays a list of all the groups that you
are a member of. If the name of a user is specified, a list of that user’s groups are displayed.

Figure 3-38 Description of the groups command.

Utility: newgrp { - | groupname)

The newgrp utility, when invoked with a group name as an argument, creates a new shell
with an effective group 1D corresponding to the group name. The old shell sleeps until you
exit the newly created shell. You must be a member of the group that you specify. If you use a
dash (-) instead of a group name as the argument, a shell is created with the same settings as

the shell that was created when you logged into the system.

, - 22 /26
Figure 3-44 Description of the newgrp command.

I Changing File Attributes

Utilitv: chmod -R change { , change }*{ fileName }+

The chmod utility changes the modes of the specified files according to the change parame-
ters, which may take the following forms:
clusterSelection+new Permissions (add permissions)
clusterSelection-newPermissions (subtract permissions)
and
clusterSelection=new Permissions (assign permissions absolutely)
where clusterSelection 1s any combination of:
*u (user/owner)
* g (group)
* 0 (others)
*a (all)
and newPermissions 1s any combination of
1 (read)
*w (write)
* X (execute)
*5 (set user ID/set group ID)
The -R option recursively changes the modes of the files in directories. Please see the follow-
ing text for examples. Changing a directory’s permission settings doesn’t change the settings
of the files that it contains.

Figure 3-40 Description of the chmod command. 23/26

User Group Others

setting rwx r-X ---
binary 111 101 000
octal 7 3 0

Figure 3-42 Permission of 750 for the chmod command.

Requirement Change parameters
Add group write permission. g+w
Remove user read and write permission. U-I'W
Add execute permission for user, group, and others. a+x
Give the group just read permission. g=r

Add write permission for user, and remove read from group. u+w, g-r

Figure 3-41 File permission specifications for the chmod command.

24/ 26

Utility: chown -R newUserld | fileName }+

The chown utility allows a super-user to change the ownership of files. All of the files that
follow the newUserld argument are affected. The -R option recursively changes the owner of
the files in directories.

Figure 3-43 Description of the chmod command.

25/ 26

I Editors

An editor is used to create an (ASCII text) file

* Generally, the editor you use is independent of the
application (although sometimes they can help by
syntax coloring).

 UNIX supports several editors:
- vi (orvim)
- emacs
- nano (like wordpad on windows)
 “The best editor to use is the one you know”

« However, knowing a good programming editor is
worth knowing, will save you time in the long run.

26 /26

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

