Chapter 12

System calls and library functions
This section contains the following system calls and library functions, listed in alphabetical order:

accept fchown 1octl pipe
alarm fentl kill read
bind fork Ichown readdir
bzero fstat link setegid
chdir ftruncate listen seteuid
chmod getegid Iseek sejgid
chown geteuid Istat setpgid
close getgid memset setuid
closedir gethostbyname mkdir signal
connect gethostname mkfifo socket
dup getpgid mknod stat
dup2 getpid nice sync
execl getppid ntohl truncate
execlp getuid ntohs unlink
execv htonl open wait
execvp htons opendir write
exit inet_addr pause

fchmod inet_ntoa perror

open close read write Iseek unlink chown dup2 @ @

fcntl fstat ftruncate truncate stat sync dup link

mknod ioctl pipe @ getdents
1 accept bind connect listen socket

gethostbyname gethostname htonl htons inet_addr inet_ntoa

Figure 12-1 File management system call hierarchy.

Process management

chdir wait

nice exec exit
setgid getpid getppid setuid

getgid getrgid getuid getruid alarm signal Kill pause

Figure 12-2 Process management system call hierarchy.

perror

Figure 12-3 Error handling hierarchy.

Library Function: void perror (char* str)

perror () displays the string str, followed by a colon, followed by a description of the last sys-
tem call error. If there is no error to report, it displays the string “Error 0.” Actually, perror ()
isn’t a system call—it’s a standard C library function.

Figure 12-4 Description of the perror () system call.

#define EPERM 1 /* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */

#define EINTR 4 /* Interrupted system call */
#define EIO S /* I/0 error */

Value Meaning

0 standard input (stdin)
| standard output (stdout)
2 standard error (stderr)

Figure 12-5 File descriptor values for standard I/O channels.

Name Function
open Opens/creates a file.
read Reads bytes from a file into a buffer.
write Writes bytes from a buffer to a file.
Iseek Moves to a particular offset in a file.
close Closes a file.
unlink Removes a file.

Figure 12-7 Linux system calls for basic I/O operations.

System Call: int open (char* fileName, int mode [, int permissions))

open () allows you to open or create a file for reading and/or writing. fileName 1s an absolute
or relative pathname and mode 1s a bitwise or’ing of a read/wnite flag together with zero or
more miscellaneous flags. permissions 1s a number that encodes the value of the file’s per-
mission flags, and should only be supplied when a file is being created. It is usually written
using the octal encoding scheme described in Chapter 3, “GNU Utlities for Nonprogram-
mers.” The permissions value 1s affected by the process’s umask value, described in
Chapter 5, “The Linux Shells.” The values of the predefined read/write and miscellaneous
flags are defined in “/usr/include/fentl.h”. The read/write flags are as follows:

FLAG MEANING
O_RDONLY Open for read-only.
O_WRONLY Open for write-only.
O_RDWR Open for read and write.

The miscellaneous flags are as follows:

FLAG MEANING

O_APPEND Position the file pointer at the end of the file before each
write ().

O_CREAT If the file doesn’t exist, create the file, and set the owner ID to

the process’s effective user ID. The umask value 1s used when
determining the initial permission flag settings.

O_EXCL If O_CREAT is set and the file exists, then open () fails.

O_NONBLOCK This setting works only for named pipes. If set, an open for
or read-only will return immediately, regardless of whether the
O_NDELAY write end is open, and an open for write-only will fail if the read

end 1sn’t open. If clear, an open for read-only or write-only will
block until the other end is also open.

O_TRUNC If the file exists, it 1s truncated to length zero.

open () returns a non-negative file descriptor if successful; otherwise, it returns -1.

Figure 12-10 Description of the open () system call.

System Call: ssize_t read (int fd, void* buf, size_t count)

[Note: This synopsis describes how read () operates when reading a regular file. For informa-
tion on reading from special files, please refer to later sections of this chapter.]

read () copies count bytes from the file referenced by the file descriptor fd into the buffer
buf. The bytes are read from the current file position, which 1s then updated accordingly.

read () copies as many bytes from the file as it can, up to the number specified by count,
and returns the number of bytes actually copied. If a read () 1s attempted after the last byte has
already been read, it returns 0, which indicates end-of-file.

If successful, read () returns the number of bytes that it read; otherwise, it returns -1.

Figure 12-11 Description of the read () system call.

System Call: ssize_t write (int fd, void* buf, size_t count)

[Note: This synopsis describes how wnite () operates when writing to a regular file. For infor-
mation on writing to special files, please refer to later sections of this chapter.]

write () copies count bytes from a buffer buf to the file referenced by the file descriptor
fd. The bytes are written at the current file position, which is then updated accordingly. If the
O_APPEND flag was set for fd, the file position 1s set to the end of the file before each write.

write () copies as many bytes from the buffer as it can, up to the number specified by count,
and returns the number of bytes actually copied. Your process should always check the return
value. If the retum value 1sn’t count, then the disk probably filled up and no space was left.

If successful, wnite () returns the number of bytes that were written; otherwise, 1t returns -1.

Figure 12-12 Description of the write () system call.

System Call: off_t Iseek (int fd, off _t offset, int mode)

Iseek () allows you to change a descriptor’s current file position. fd is the file descriptor, off-
set is a long integer, and mode describes how offset should be interpreted. The three possible
values of mode are defined in “/usr/include/stdio.h,” and have the following meaning:

VALUE MEANING

SEEK_SET offset is relative to the start of the file.
SEEK_CUR offset is relative to the current file position.
SEEK_END offset is relative to the end of the file.

Iseek () fails if you try to move before the start of the file.
If successful, Iseek () returns the current file position; otherwise, it returns -1.

Figure 12-13 Description of the Iseek () system call.

System Call: int close (int fd)

close () frees the file descriptor fd. If fd is the last file descriptor associated with a particular
open file, the kernel resources associated with the file are deallocated. When a process termi-
nates, all of its file descriptors are automatically closed, but it’s better programming practice
to close a file when you’re done with it. If you close a file descriptor that’s already closed, an
error Occurs.

If successful, close () returns zero; otherwise, it returns -1.

Figure 12-14 Description of the close () system call.

System Call: int unlink (const char* fileName)

unlink () removes the hard link from the name fileName to its file. If fileName is the last link
to the file, the file’s resources are deallocated. In this case, if any process’s file descriptors are
currently associated with the file, the directory entry is removed immediately but the file is
only deallocated after all of the file descriptors are closed. This means that an executable file
can unlink itself during execution and still continue to completion.

If successful, unlink () returns zero; otherwise, it returns -1.

Figure 12-15 Description of the unlink () system call.

Name Function

stat Obtains status information about a file.
fstat Works just like stat.

readdir Obtains directory entries.

Figure 12-16 Advanced Linux /O system calls.

System Call: int stat (const char* name, struct stat* buf)
int Istat (const char* name, struct stat* buf)
int fstat (int fd, struct stat* buf)

stat () fills the buffer buf with information about the file name. The stat structure is defined
in “/usr/include/sys/stat.h”. Istat () returns information about a symbolic link itself rather
than the file it references. fstat () performs the same function as stat (), except that it takes
the file descriptor of the file to be stat’ed as its first parameter. The stat structure contains
the following members:

NAME MEANING

st_dev the device number

st_ino the inode number
st_mode the permission flags
st_nlink the hard link count

st_uid the user ID

st_gid the group ID

st_size the file size

st_atime the last access time
st_mtime the last modification time
st_ctime the last status change time

There are some predefined macros defined in “/usr/include/sys/stat.h” that take st_mode as
their argument and return true (1) for the following file types:

MACRO RETURNS TRUE FOR FILE TYPE
S_ISDIR directory

S_ISCHR character-oriented special device
S_ISBLK block-oriented special device
S_ISREG regular file

S_ISFIFO pipe

The time fields may be decoded using the standard C library asctime () and localtime ()
subroutines.
stat () and fstat () return O if successful and -1 otherwise.

Figure 12-18 Description of the stat () system call.

Library Function: DIR * opendir (char * fileName)
struct dirent * readdir (DIR *dir)
int closedir (DIR *dir)

opendir () opens a directory file for reading and returns a pointer to a stream descriptor which
is used as the argument to readdir () and closedir (). readdir () returns a pointer to a dirent
structure containing information about the next directory entry each time it is called.
closedir () is used to close the directory. The dirent structure is defined in the system header
file “/usr/include/dirent.h”

NAME MEANING

d_ino the inode number

d_off the offset of the next directory entry
d_reclen the length of the directory entry structure
d_name the filename

opendir () returns the directory stream pointer when successful, NULL when not success-
ful. readdir () returns 1 when a directory entry has been successfully read, 0 when the last
directory entry has already been read, and -1 in the case of an error. closedir () returns 0 on
success, -1 on failure.

Figure 12-19 Description of the opendir (), readdir (), and closedir () library functions.

Name

Function

chown

Changes a file’s owner and/or group.

chmod

Changes a file's permission settings.

dup

Duplicates a file descriptor.

dup2

Similar to dup.

fchown

Works just like chown.

fchmod

Works just like chmod.

fentl

Gives access to miscellaneous file characteristics.

ftruncate

Works just like truncate.

ioctl

Controls a device.

link

Creates a hard link.

mknod

Creates a special file.

sync

Schedules all file buffers to be flushed to disk.

truncate

Truncates a file.

Figure 12-20 Linux file management system calls.

System Call: int chown (const char* fileName, uid_t ownerld, gid_t groupld)
int Ichown (const char* fileName, uid_t ownerld, gid_t groupld)
int fchown (int fd, uid_t ownerld, gid_t groupld)

chown () causes the owner and group IDs of fileName to be changed to ownerld and groupld,
respectively. A value of -1 in a particular field means that its associated value should remain
unchanged.

Only a super-user can change the ownership of a file, and a user may change the group
only to another group that he/she is a member of. If fileName is a symbolic link, the owner
and group of the link are changed instead of the file that the link is referencing.

fchown () is just like chown () except that it takes an open descriptor as an argument
instead of a filename.

Ichown () changes the ownership of a symbolic link itself rather than the file the link
references.

They both return -1 if unsuccessful, and O otherwise.

Figure 12-21 Description of the chown () system call.

System Call: int chmod (const char* fileName, int mode)
int fchmod (int fd, mode_t mode);

chmod () changes the mode of fileName to mode, where mode is usually supplied as an octal
number as described in Chapter 3, “GNU Utilities for Nonprogrammers.” The “set user ID”
and “set group ID” flags have the octal values 4000 and 2000, respectively. To change a file’s
mode, you must either own it or be a super-user.

fchmod () works just like chmod () except that it takes an open file descriptor as an
argument instead of a filename.

They both return -1 if unsuccessful, and O otherwise.

Figure 12-22 Description of the chmod () system call.

System Call: int fentl (int fd, int cmd, int arg)

fentl () performs the operation encoded by cmd on the file associated with the file descriptor
fd. arg is an optional argument for cmd. Here are the most common values of cmd:

VALUE OPERATION
F_SETFD Set the close-on-exec flag to the lowest bit of arg (0 or 1).
F_GETFD Return a number whose lowest bit is 1 if the close-on-exec flag is set,

and 0 otherwise.

F_GETFL Return a number corresponding to the current file status flags and
access modes.

F_SETFL Set the current file status flags to arg.

F_GETOWN Return the process ID or process group that is currently set to receive
SIGIO/SIGURG signals. If the returned value is positive, it refers to a
process ID. If it’s negative, its absolute value refers to a process group.

F_SETOWN Set the process ID or process group that should receive SIGIO/
SIGURG signals to arg. The encoding scheme is as described for
F_GETOWN.

fentl () returns -1 if unsuccessful.

Figure 12-24 Description of the fcntl () system call.

System Call: int ioctl (int fd, int cmd, int arg)

ioctl () performs the operation encoded by cmd on the file associated with the file descriptor fd.
arg is an optional argument for cmd. The valid values of cmd depend on the device that fd
refers to, and are typically documented in the manufacturer’s operating instructions. I therefore
supply no examples for this system call.

ioctl () returns -1 if unsuccessful.

Figure 12-25 Description of the ioctl () system call.

System Call: int link (const char* oldPath, const char* newPath)

link () creates a new label newPath and links it to the same file as the label oldPath. The
hard link count of the associated file is incremented by one. If oldPath and newPath reside
on different physical devices, a hard link cannot be made and link () fails. For more infor-
mation about hard links, consult the description of In in Chapter 4, “GNU Ultilities for
Power Users.”

link () returns -1 if unsuccessful, and 0 otherwise.

Figure 12-26 Description of the link () system call.

System Call: int mknod (const char* fileName, mode_t fype, dev_t device)
int mkdir (const char* fileName, mode_t mode)

mknod () creates a new regular, directory, or special file called fileName whose type can be
one of the following:

VALUE MEANING

S_IFDIR directory

S_IFCHR character-oriented special file
S_IFBLK block-oriented special file
S_IFREG regular file

S_IFIFO named pipe

Only a super-user can use mknod () to create directories or special files.

mkdir () creates a directory with permission setting created by a logical AND of mode
with the process’s current umask setting.

It is now typical to use the mkdir () system call to create directories and mkfifo () (see
below) to make named pipes rather than mknod ().

Both mknod () and mkdir () return -1 if unsuccessful, and 0 otherwise.

Figure 12-27 Description of the mknod () and mkdir () system calls.

Library Function: int mkfifo (const char* fileName, mode_t mode)

mkfifo () creates a named pipe called fileName with permission setting created by a logical
AND of mode with the process’s current umask setting.

Figure 12-28 Description of the mkfifo () library function.

System Call: void sync ()

sync () schedules all of the file system buffers to be written to disk. For more information on
the buffer system, consult Chapter 13, “Linux Internals.” sync () should be performed by any

programs that bypass the file system buffers and examine the raw file system.
sync () always succeeds.

Figure 12-29 Description of the sync () system call.

System Call: int truncate (const char* fileName, off _t length)
int ftruncate (int fd, off_t length)

truncate () sets the length of the file fileName to be length bytes. If the file is longer than
length, it is truncated. If it is shorter than length, it is padded with ASCII nulls.

ftruncate () works just like truncate () except that it takes an open file descriptor as an
argument instead of a filename.

They both return -1 if unsuccessful, and O otherwise.

Figure 12-30 Description of the truncate () system call.

Parent process PID 34
running shell

Duplicate: fork ()

Parent process PID 34 Child process PID 35
running shell, running shell
waiting for child

Differentiate: exec ()

Wait for child: wait () ¥

Child process PID 35
running utility

Terminate: exit ()

Y Y

[Parent process PID 34 < Child process PID 35
running shell, Signal terminates
awakens

Figure 12-31 How a shell runs a utility.

System Call: pid_t fork (void)

fork () causes a process to duplicate. The child process is an almost-exact duplicate of the
original parent process; it inherits a copy of its parent’s code, data, stack, open file descrip-
tors, and signal table. However, the parent and child have different process ID numbers and
parent process ID numbers.

If fork () succeeds, it returns the PID of the child to the parent process, and returns 0 to
the child process. If it fails, it returns -1 to the parent process, and no child is created.

Figure 12-33 Description of the fork () system call.

System Call: pid_t fork (void)

fork () causes a process to duplicate. The child process is an almost-exact duplicate of the
original parent process; it inherits a copy of its parent’s code, data, stack, open file descrip-
tors, and signal table. However, the parent and child have different process ID numbers and
parent process ID numbers.

If fork () succeeds, it returns the PID of the child to the parent process, and returns 0 to
the child process. If it fails, it returns -1 to the parent process, and no child is created.

Figure 12-33 Description of the fork () system call.

System Call: pid_t getpid (void)
pid_t getppid (void)

getpid () and getppid () return a process’s ID and parent process’s ID numbers, respectively.
They always succeed. The parent process ID number of PID 1 is 1.

Figure 12-34 Description of the getpid () and getppid () system calls.

$ cat myfork.c ...list the program.
#include <stdio.h>
main
{
int pid;
printf ("I'm the original process with PID %d and PPID %d.\n",
getpid (), getppid);
pid = fork (); /* Duplicate. Child and parent continue from here */
if (pid != 0) /* pid is non-zero, so I must be the parent */
{
printf ("I'm the parent process with PID %d and PPID %d.\n",
getpid O, getppid ());
printf ("My child's PID is %d\n", pid);
}
else /* pid 1is zero, so I must be the child */
{
printf ("I'm the child process with PID %d and PPID %d.\n",
getpid (), getppid ());
}

printf ("PID %d terminates.\n", getpid ()); /* Both processes
execute this */

}

S ./myfork ...run the program.

I'm the original process with PID 13292 and PPID 13273.
I'm the parent process with PID 13292 and PPID 13273.
My child's PID is 13293.

I'm the child process with PID 13293 and PPID 13292.
PID 13293 terminates. ...child terminates.

PID 13292 terminates. ...parent terminates.

s

main
{
int pid;
printf ("I'm the original process with PID %d and PPID %d.\n",
getpid (), getppid O);
pid = fork (); /* Duplicate. Child and parent continue from here */
if (pid != 0) /* Branch based on return value from fork () */

/* pid is nonzero, so I must be the parent */
printf ("I'm the parent process with PID %d and PPID %d.\n",
getpid (), getppid O);
printf ("My child's PID is %d\n", pid);
}

else

/* pid is zero, so I must be the child */

sleep (5); /* Make sure that the parent terminates first */

printf ("I'm the child process with PID %d and PPID %d.\n",
getpid), getppid Q);

printf ("PID %d terminates.\n", getpid ()); /* Both processes
execute this */
}
$./orphan ...run the program.
I'm the original process with PID 13364 and PPID 13346.
I'm the parent process with PID 13364 and PPID 13346.
PID 13364 terminates.

I'm the child process with PID 13365 and PPID 1. . ..orphaned!
PID 13365 terminates.
$ _
init
,/
,I

dies . Adopt child
\\\\
Sy
Child
survives
the parent

Figure 12-35 Process adoption.

System Call: pid_t wait (int* status)

wait () causes a process to suspend until one of its children terminates. A successful call to
wait () returns the pid of the child that terminated and places a status code into sfafus that is
encoded as follows:

If the rightmost byte of status is zero, the leftmost byte contains the low eight bits of the
value returned by the child’s call to exit () or return ().

If the rightmost byte is nonzero, the rightmost seven bits are equal to the number of the
signal that caused the child to terminate, and the remaining bit of the rightmost byte is set to 1
if the child produced a core dump.

If a process executes a wait () and has no children, wait () returns immediately with -1.
If a process executes a wait () and one or more of its children are already zombies, wait ()
returns immediately with the status of one of the zombies.

Figure 12-37 Description of the wait () system call.

System Call: void exit (int status)

exit () closes all of a process’s file descriptors, deallocates its code, data, and stack, and then
terminates the process. When a child process terminates, it sends its parent a SIGCHLD sig-
nal and waits for its termination code status to be accepted. Only the lower eight bits of status
are used, so values are limited to 0-255. A process that is waiting for its parent to accept its
return code is called a zombie process. A parent accepts a child’s termination code by execut-
ing wait (), which is described shortly.

The kernel ensures that all of a terminating process’s children are orphaned and
adopted by “init” by setting their PPID to 1. The “init” process always accepts its children’s
termination codes.

exit () never returns.

Figure 12-36 Description of the exit () system call.

Library Function: int execl (const char* path, const char* arg0, const char* argl, ..., const
char* argn, NULL)

int execv (const char* parh, const char* argv|])

int execlp (const char* path, const char* arg0, const char* arg/...., const char* argn,
NULL)

int execvp (const char* path, const char* argv|])

The exec family of library functions replace the calling process’s code, data, and stack from
the executable whose pathname is stored in path.

execvl () is identical to execlp (), and execv () is identical to execvp (), except that
execl () and execv () require the absolute or relative pathname of the executable file to be sup-
plied, whereas execlp () and execvp () use the SPATH environment variable to find path.

If the executable is not found, the system call returns -1; otherwise, the calling process
replaces its code, data, and stack from the executable and starts to execute the new code. A
successful call to any of the exec system calls never returns.

execl () and execlp () invoke the executable with the string arguments pointed to by
argl..argn. arg0 must be the name of the executable file itself, and the list of arguments must
be null terminated.

execv () and execvp () invoke the executable with the string arguments pointed to by
argv[1]..argv[n], where argv[n+1] is NULL. argv[0] must be the name of the executable file
itself.

Figure 12-38 Description of the exec family of library functions.

System Call: int chdir (const char* pathname)

chdir () sets a process’s current working directory to the directory pathname. The process
must have execute permission from the directory to succeed.
chdir () returns O if successful; otherwise, it returns -1.

Figure 12-39 Description of the chdir () system call.

Library Function: int nice (int delta)

nice () adds delta to a process’s current priority value. Only a super-user may specify a delta
that leads to a negative priority value. Legal priority values lie between -20 and +19. If a delta
is specified that takes a priority value beyond a limit, the priority value is truncated to the limit.

If nice () succeeds, it returns the new nice value; otherwise it returns -1. Note that this
can cause problems, since a nice value of -1 is legal.

Figure 12-40 Description of the nice () library function.

System Call: uid_t getuid ()
uid_t geteuid ()
gid_t getgid ()
gid_t getegid ()

getuid () and geteuid () return the calling process’s real and effective user ID, respectively.
getgid () and getegid () return the calling process’s real and effective group ID, respectively.
The ID numbers correspond to the user and group IDs listed in the “/etc/passwd™ and “/etc/
group™ files.

These calls always succeed.

Figure 12-41 Description of the getuid (), geteuid (), getgid (), and getegid () system calls.

System Call: int setuid (uid_t id)
int seteuid (uid_t id)
int setgid (gid_t id)
int setegid (gid_t id)

seteuid () and setegid () set the calling process’s effective user and group ID, respectively.
setuid () and setgid () set the calling process’s effective and real user and group ID, respec-
tively, to the specified value.

These calls succeed only if executed by a super-user, or if id is the real or effective user
(group) ID of the calling process. They return 0 if successful; otherwise, they return -1.

Figure 12-42 Description of the setuid (), seteuid (), setgid (), and setegid () system calls.

Default

Macro = action Description
SIGHUP 1 quit Hangup or death of controlling process.
SIGINT 2 quit Keyboard interrupt.
SIGQUIT 3 core Quit.
SIGILL 4 core Illegal instruction.
SIGABRT 6 core Abort.
SIGFPE 8 core Arithmetic exception.
SIGKILL 9 quit Kill (cannot be caught, blocked, or ignored).
SIGUSRI1 10 quit User-defined signal.
SIGSEGV 11 core Segmentation violation (out of range address).
SIGUSR2 12 quit User-defined signal.
SIGPIPE 13 quit Write on a pipe or other socket with no one to read it.
SIGALRM 14 quit Alarm clock.
SIGTERM 15 quit Software termination signal (default signal sent by kill).
SIGCHLD 17 ignore Status of child process has changed.
SIGCONT 18 none Continue if stopped.
SIGSTOP 19 stop Stop (suspend) the process.
SIGTSTP 20 stop Stop from the keyboard.
SIGTTIN 21 stop Background read from tty device.
SIGTTOU 22 stop Background write to tty device.

Figure 12-44 POSIX signals.

Default

Macro = action Description
SIGHUP 1 quit Hangup or death of controlling process.
SIGINT 2 quit Keyboard interrupt.
SIGQUIT 3 core Quit.
SIGILL 4 core Illegal instruction.
SIGABRT 6 core Abort.
SIGFPE 8 core Arithmetic exception.
SIGKILL 9 quit Kill (cannot be caught, blocked, or ignored).
SIGUSRI 10 quit User-defined signal.
SIGSEGV 11 core Segmentation violation (out of range address).
SIGUSR2 12 quit User-defined signal.
SIGPIPE 13 quit Write on a pipe or other socket with no one to read it.
SIGALRM 14 quit Alarm clock.
SIGTERM 15 quit Software termination signal (default signal sent by kill).
SIGCHLD 17 ignore Status of child process has changed.
SIGCONT 18 none Continue if stopped.
SIGSTOP 19 stop Stop (suspend) the process.
SIGTSTP 20 stop Stop from the keyboard.
SIGTTIN 21 stop Background read from tty device.
SIGTTOU 22 stop Background write to tty device.

Figure 12-44 POSIX signals.

System Call: void (*signal (int sigCode, void (*func)(int))) (int)

signal () allows a process to specify the action that it will take when a particular signal is
received. The parameter sigCode specifies the number of the signal that is to be repro-
grammed, and func may be one of several values:

«SIG_IGN, which indicates that the specified signal should be ignored and discarded.

« SIG_DFL, which indicates that the kernel’s default handler should be used.

«an address of a user-defined function, which indicates that the function should be exe-
cuted when the specified signal arrives.

The valid signal numbers are included from “/usr/include/signal.h™ (and the other
header files that includes, the actual signal definitions are in “/usr/include/asm/signal.h™ on
my Linux machine). The signals SIGKILL and SIGSTP may not be reprogrammed. A child
process inherits the signal settings from its parent during a fork (). When a process performs
an exec (), previously ignored signals remain ignored but installed handlers are set back to the
default handler.

With the exception of SIGCHLD, signals are not stacked. This means that if a process is
sleeping and three identical signals are sent to it, only one of the signals is actually processed.

signal () returns the previous func value associated with sigCode if successful; other-
wise it returns -1.

Figure 12-46 Description of the signal () system call.

System Call: int Kill (pid_t pid, int sigCode)

kill () sends the signal with value sigCode to the process with PID pid. kill () succeeds and
the signal is sent as long as at least one of the following conditions is satisfied:

*The sending process and the receiving process have the same owner.
*The sending process is owned by a super-user.

There are a few variations on the way that kill () works:

«If pid is 0, the signal is sent to all of the processes in the sender’s process group.

«If pid is -1 and the sender is owned by a super-user, the signal is sent to all processes,
including the sender.

«If pid is -1 and the sender is not a super-user, the signal is sent to all of the processes
owned by the same owner as the sender, excluding the sending process.

«If the pid is negative and not -1, the signal is sent to all of the processes in the process

group.

Process groups are discussed later in this chapter. If kill () manages to send at least one signal
successfully, it returns O; otherwise, it returns -1.

Figure 12-48 Description of the kill () system call.

