UNIX Process Creation/Termination

From Glass/Ables, “UNIX for Programmers and Users”

Name Function

fork duplicates a process
getpid

getppid

obtains a process’ ID number
obtains a parent process’ ID number
terminates a process

waits for a child process

replaces the code, data, and stack of a process

FIGURE 13.32

UNIX process-oriented system calls.

FORK(2)

NAME

Linux Programmer's Manual FORK(2)

fork — create a child process

SYNOPSIS

#include <unistd.h>

pid_t fork(void);

DESCRIPTION
fork()

creates a new process by duplicating the calling process. The

new process, referred to as the child, 1s an exact duplicate of the
calling process, referred to as the parent, except for the following

points:
* The

the
* The

ID.

child has 1its own unique process ID, and this PID does not match
ID of any existing process group (setpgid(2)).

child's parent process ID i1s the same as the parent's process

Parent
it (PID 1)

|

Duplicate: fork (), then
differentiate: exec ()

Child Child Child
getty (PID 4) getty (PID 5) getty (PID 6)
handle a handle a handle a
login login login

FIGURE 13.30

The mitial process hierarchy.

#include <stdio.h>
main ()

{

int pid, status, childPid;

printf ("I'm the parent process and my PID is %d\n", getpid ());
pid = fork (); /* Duplicate */

if (pid !'= 0) /* Branch based on return value from fork () */

{
printf ("I'm the parent process with PID %d and PPID %d\n",

getpid (), getppid ());
childPid = wait (&status); /* Wait for a child to terminate. */
printf ("A child with PID %d terminated with exit code %d\n",

childPid, status >> 8);
}

else

{
printf ("I'm the child process with PID %d and PPID %d\n",

getpid (), getppid ());
exit (42); /* Exit with a silly number */

}
printf ("PID %d terminates\n", getpid ());

}
S mywait ...run the program.

I'm the parent process and my PID is 13464

I'm the child process with PID 13465 and PPID 13464
I'm the parent process with PID 13464 and PPID 13409
A child with PID 13465 terminated with exit code 42

PID 13465 terminates
S _

Parent process PID 34

running shell
Duplicate: fork ()
Parent process PID 34 Child process PID 35
running shell, running shell
waiting for child
Differentiate: exec ()
Wait for child: wait ()
Child process PID 35
running utility
Termimate: exit ()
Parent process PID 34 B Child process PID 35
running shell, Signal terminates
awakens
FIGURE 13.31

How a shell runs a utility.

Library Routine: int execl (const char* path, const char* arg0, const char* argl, ...,
const char* argn, NULL)

int execv (const char* path, const char* argv[])

int execlp (const char* path, const char* arg(0, const char* argl,..., const
char* argn, NULL)

int execvp (const char* path, const char* argv|])

The exec () family of library routines replaces the calling process’ code, data, and
stack from the executable file whose pathname 1s stored in path.

execl () 1s identical to execlp (), and execv () is identical to execvp (), except
that execl () and execv () require the absolute or relative pathname of the exe-
cutable file to be supplied, whereas execlp () and execvp () use the $PATH environ-
ment variable to find path.

If the executable file 1s not found, the system call returns —1; otherwise, the
calling process replaces its code, data, and stack from the executable file and starts
to execute the new code. A successful exec () never returns.

execl () and execlp () invoke the executable file with the string arguments
pointed to by argl..argn. arg0) must be the name of the executable file itself, and the
list of arguments must be terminated with a null.

execv () and execvp () invoke the executable file with the string arguments
pointed to by argv|1]..argv[n], where argv|n+1] is NULL. argv|[0] must be the name
of the executable file itselt.

FIGURE 13.38

Description of the execl (), execv (), execlp (), and execvp () library routines.

build argo build argo build argo
execy v each R use execve
P PATH prefix environ (system call)

build path from
/proc/self/fd
alias

fexecve

Figure 8.15 Relationship of the seven exec functions

