
Getting Started With POSIX Threads

Tom Wagner – Don Towsley
Department of Computer Science

University of Massachusetts at Amherst

July 19, 1995

Modified - Shashikanth Patlolla and Bob Rinker
University of Idaho

1 Introduction: What is a thread and what is it good for?

Threads are often called lightweight processes and while this term is somewhat of an over simplification, it is
a good starting point. A process contains a bundle of resources such as the file descriptor table and address
space, and one or more threads; the threads handle all execution activities. All threads associated with a
process share the task’s resources. Thus a thread is essentially a program counter, a stack, and a set of
registers – all the other data structures belong to the process.

Since threads are very small compared with processes, thread creation is relatively cheap in terms of CPU
costs. As processes require their own resource bundle, and threads share resources, threads are likewise
memory frugal. Threads give programmers the ability to write concurrent applications that run on both
uniprocessor and multiprocessor machines transparently, taking advantage of the additional processors when
they exist. Additionally, threads can increase performance in a uniprocessor environment when the applica-
tion performs operations that are likely to block or cause delays, such file or socket I/O.

In the following sections we discuss a few of the subroutines contained in the POSIX threads standard library,
called pthreads. It uses a familiar subroutine-like model to implement threads. The thread code itself is placed
in a subroutine. The main program, instead of simply calling the subroutine, uses a pthread library call to
“activate” the thread. The main program returns from the call immediately, and the thread begins executing
on its own, concurrently with the main program. The diagram below illustrates the difference between a
subroutine and a thread.

1

2 Hello World

Now that the formalities are over with, let’s jump right in. The pthread create function creates a new
thread. It takes four arguments: a thread variable or holder for the thread, a pointer to a thread attribute
(which uses default values if set to NULL), the function for the thread to call when it starts execution, and
an argument to the function. For example:

pthread_t a_thread;

void *thread_function(void *argument); // Note function and arg type

char *some_argument;

pthread_create(&a_thread, NULL, thread_function, (void *) &some_argument);

NOTE: If thread function isn’t declared as above, then third argument to pthread create should be
type cast. Example: (void *) &thread function .

Unlike processes created by the UNIX fork function that begin execution at the same point as their parents,
threads begin their execution at the function specified in pthread create. The reason for this is clear; if
threads did not start execution elsewhere we would have multiple threads executing the same instructions
with the same resources. Recall that threads share the process’ resource bundle with all other threads in the
process.

Now that we know how to create threads we are ready for our first application. Let’s design a multi-threaded
application that prints the beloved “Hello World” message on stdout. First we need two thread variables
and we need a function for the new threads to call when they start execution. We also need some way
to specify that each thread should print a different message. One approach is to partition the words into
separate character strings and to give each thread a different string as its “startup” parameter. Take a look
at the following code:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void *print_message_function(void *ptr);

char *message1 = "Hello";

char *message2 = "World\n";

int main()

{

pthread_t thread1, thread2;

pthread_create(&thread1, NULL, print_message_function, (void *) message1);

pthread_create(&thread2, NULL, print_message_function, (void *) message2);

pthread_join(thread1, NULL);

pthread_join(thread2, NULL);

} // END main

void * print_message_function(void *ptr)

{

char *message;

message = (char *) ptr;

printf("%s ", message);

pthread_exit(NULL);

} // END print_message_function

2

Note the function prototype for print message function and the casts preceding the message arguments in
the pthread create call. The program creates the first thread by calling pthread create and passes “Hello”
as its startup argument; the second thread is created with “World” as its argument. When the first thread
begins execution it starts at the print message function with its “Hello” argument. It prints “Hello” and
comes to the end of the function. A thread terminates when it leaves its initial function; therefore the first
thread terminates after printing “Hello.” When the second thread executes it prints “World” and likewise
terminates. While this program appears reasonable (albeit rather silly), there are two major flaws.

First, since threads execute concurrently there is no guarantee that the first thread will reach its printf

function before the second. Therefore we may see “World Hello” rather than “Hello World.”

There is a more subtle point. Note the call to exit made by the parent thread1 in the main block. If the
parent thread executes the exit call prior to either of the child threads executing printf, no output will
be generated at all. This is because the exit function exits the process (releases the task) thus terminating
all threads. Any thread, parent or child, who calls exit can terminate all the other threads along with the
process. Threads wishing to terminate explicitly must use the pthread exit function.

Thus our program has two race conditions: the race for the exit call and the race to see which child reaches
its printf first. Let’s fix the race conditions with a little crazy glue and duct tape. Since we want each
child thread to finish before the parent thread, let’s insert a delay in the parent, to give the children time
to reach printf. To ensure that the first child thread reaches printf before the second, let’s insert a delay
prior to the pthread create call that creates the second thread. The code is:

void *print_message_function(void *ptr);

main()

{

pthread_t thread1, thread2;

char *message1 = "Hello";

char *message2 = "World";

pthread_create(&thread1, NULL, print_message_function, (void *) message1);

sleep(10);

pthread_create(&thread2, NULL, print_message_function, (void *) message2);

sleep(10);

exit(0);

} // END main

void *print_message_function(void *ptr)

{

char *message;

message = (char *) ptr;

printf("%s", message);

pthread_exit(0);

} // END print_message_function

Does this code meet our objective? Not really. It is never safe to rely on timing delays to perform synchro-
nization. Because threads are so tightly coupled it’s tempting to approach them with a less rigorous attitude
concerning synchronization, but that temptation must be avoided. The race condition here is exactly the
same situation we have with a distributed application and a shared resource. The resource is the standard
output and the distributed computing elements are the three threads. Thread one must use printf/stdout
prior to thread two and both must do their business before the parent thread calls exit.

Beyond our attempt to synchronize using delays, we have made yet another blunder. The sleep function,

1While all threads are equal, we shall often refer to the single thread that begins execution with the application the parent

thread to distinguish it from later spawned threads, which we will refer to as child threads or children.

3

like the exit function, relates to processes on most systems. When a thread calls sleep the entire process
sleeps, i.e., all threads sleep while the process sleeps. Thus we have exactly the same situation as we had
without the calls to sleep, but now the program takes twenty seconds longer to run. The proper function
to use when delaying a thread is nanosleep, which has been specifically implemented to work with threads.
For example, to delay a thread for two seconds:

4

struct timespec delay;

delay.tv_sec = 2;

delay.tv_nsec = 0;

nanosleep(&delay);

Functions covered in this section: pthread create(), pthread exit(), nanosleep().

3 Thread Synchronization

POSIX provides two thread synchronization primitives, the mutex and the condition variable. Mutexes are
simple lock primitives that can be used to control access to a shared resource. Note that with threads,
the entire address space is shared so everything can be considered a shared resource. However, in most
cases threads work individually with private local variables, i.e., those created within the function called
by pthread create and successive functions, and combine their efforts through global (shared) variables.
Access to the shared items must be controlled.

Lets create a readers/writers application where a single reader and a single writer communicate using a
shared buffer and access is controlled using a mutex.

void *reader_function(void *ptr);

void *writer_function(void *ptr);

char buffer;

int buffer_has_item = 0;

pthread_mutex_t mutex;

struct timespec delay;

main()

{

pthread_t reader;

delay.tv_sec = 2;

delay.tv_nsec = 0;

pthread_mutex_init(&mutex, pthread_mutexattr_default);

pthread_create(&reader, pthread_attr_default, reader_function, NULL);

writer_function();

} // END main

void *writer_function(void *ptr)

{

while(1)

{

pthread_mutex_lock(&mutex);

if (buffer_has_item == 0)

{

buffer = make_new_item();

buffer_has_item = 1;

}

pthread_mutex_unlock(&mutex);

nanosleep(&delay);

}

} // END writer_function

5

void *reader_function(void *ptr)

{

while(1)

{

pthread_mutex_lock(&mutex);

if (buffer_has_item == 1)

{

consume_item(buffer);

buffer_has_item = 0;

}

pthread_mutex_unlock(&mutex);

nanosleep(&delay);

}

} // END reader_function

In this simple program we assume that the buffer can only hold one item so it is always in one of two states
– either it has an item or it doesn’t. The writer first locks the mutex, blocking until it is unlocked if it is
already locked, then checks to see if the buffer is empty. If the buffer is empty, it creates a new item and
sets the flag, buffer has item, so that the reader will know the buffer now has an item. It then unlocks the
mutex and delays for two seconds to give the reader a chance to consume the item. This delay is different
from our previous delays in that it is only meant to improve program efficiency. Without the delay, the
writer will release the lock and in the next statement attempt to regain the lock again with the intent of
creating another item. Its very likely that the reader has not had a chance to consume the item so quickly
so the delay is a good idea.

The reader takes a similar stance. It obtains the lock, checks to see if an item has been created, and if so
consumes the item. It releases the lock and then delays for a short while giving the writer the chance to create
a new item. In this example the reader and writer run forever, generating and consuming items. However,
if a mutex is no longer needed in a program it should be released using pthread mutex destroy(&mutex).
Observe that in the mutex initialization function, which is required, we used the pthread mutexattr default

as the mutex attribute. In many implementations the mutex attribute serves no purpose what so ever, so
use of the default is strongly encouraged.

Functions covered in this section: pthread mutex init(), pthread mutex lock(),
pthread mutex unlock(), pthread mutex destroy().

4 Coordinating Activities With Semaphores

The proper use of mutexes guarantees the elimination of race conditions. However, the mutex primitive by
itself is very weak as it has only two states, locked or unlocked. The POSIX condition variable supplements
mutexes by allowing threads to block and await a signal from another thread. When the signal is received,
the blocked thread is awakened and attempts to obtain a lock on the related mutex. Thus signals and
mutexes can be combined to eliminate the spin-lock problem exhibited by our readers/writers problem. We
have designed a semaphore library of simple integer semaphores using the pthread mutex and condition
variables and will henceforth discus synchronization in that context. The code for the semaphores can be
found in Appendix A and detailed information about condition variables can be found in the man pages.

Let us revisit our readers/writers program using semaphores. We will replace the mutex primitive with
the more robust integer semaphore and eliminate the spin-lock problem. Thesemaphore library includes:
sem init, sem valinit, sem P, sem V, and sem destroy, and sem value. The P and V functions conform
to traditional semaphore semantics – the P operation blocks if the semaphore has a value less than or equal
to zero and the V operation increments the semaphore. One of the init functions must be called prior to
semaphore use – sem init initializes the semaphore with a value of one, while sem valinit initializes the
semaphore with the value specified by the second argument. The destroy function releases the semaphore if

6

it is no longer used. Finally, sem value allows you to get the value of the semaphore without blocking or
incrementing. In all functions the first argument is a pointer to a semaphore object.

Using the semaphore library, here is a correctly synchronized solution to the reader/writers problem:

void *reader_function(void *ptr);

void *writer_function(void *ptr);

void consume_item(char);

char make_new_item(void);

Semaphore writers_turn;

Semaphore readers_turn;

char buffer;

main()

{

pthread_t reader;

sem_valinit(&readers_turn, 0); /* writer must go first/

sem_init(&writers_turn);

pthread_create(&reader, NULL, reader_function, NULL);

writer_function(NULL);

} // END main

void *writer_function(void *ptr)

{

while(1)

{

sem_P(&writers_turn);

buffer = make_new_item();

sem_V(&readers_turn);

}

} // END writer_function

void *reader_function(void *ptr)

{

while(1)

{

sem_P(&readers_turn);

consume_item(buffer);

sem_V(&writers_turn);

}

} // END reader_function

7

The previous example still does not fully utilize the power of the general integer semaphore. Let’s revise the
hello world program from Section 2 and fix the race conditions using the integer semaphore.

void *print_message_function(void *ptr);

Semaphore child_counter;

Semaphore worlds_turn;

main()

{

pthread_t thread1, thread2;

char *message1 = "Hello";

char *message2 = "World";

sem_valinit(&child_counter, -1);

sem_init(&worlds_turn);

sem_P(&worlds_turn); /* world goes second */

/*

* child_counter now must be signalled 2 times for a thread blocked on it

* to be released

*/

pthread_create(&thread1, NULL, print_message_function, (void *) message1);

sem_P(&worlds_turn);

pthread_create(&thread2, NULL, print_message_function, (void *) message2);

sem_P(&child_counter);

/* not really necessary to destroy since we are exiting anyway */

sem_destroy (&child_counter);

sem_destroy (&worlds_turn);

printf("\n");

exit(0);

} // END main

void * print_message_function(void *ptr)

{

char *message;

message = (char *) ptr;

printf("%s ", message);

sem_V(&worlds_turn);

sem_V(&child_counter);

pthread_exit(0);

} // END print_message_function

Readers can easily satisfy themselves that there are no race conditions in this version of our hello world
program and that the words are printed in the proper order. The semaphore child counter is used to
force the parent thread to block until both children have executed the printf statement and the subsequent
sem V(&child counter).

Functions covered in this section: sem init(), sem P(), sem V(), sem destroy(), and sem value().

8

5 Pragmatics

To compile with pthreads you must include the pthread header file, #include <pthread.h> and must link
to the pthread library. For example,

gcc hello_world.c -o hello_world -lpthread

To use the semaphore library you must likewise include its header file (i.e., #include "semaphore.h") and
link to the object file (or library) when creating the executable:

gcc new_hello_world.c semaphore.c -o hello_world -lpthread

Each implementation of the pthreads library is different, so a threaded program may behave differently when
compiled and run on different systems. This is especially true when thread library routines are being used
in an “illegal” or unspecified manner. It is always a good idea to write correct code, even when “incorrect”
code seems to work.

Other strange errors may occur when routines from outside the pthreads library are used within a threaded
program. This is because some libraries make “uni-process” assumptions when they were implemented –
for example, we have experienced intermittent difficulties with the buffered stream I/O functions fread and
fwrite that can only be attributed to race conditions. Libraries that have been written to work properly
with threads are called thread-safe. It is probably best to assume that a subroutine is not thread-safe unless
it is specifically stated as such.

On the issue of errors, though we did not check the return values of the thread calls in our examples to
streamline them, the return values should be consistently checked. Almost all pthread related functions will
return -1 on an error. For example:

pthread_t some_thread;

if (pthread_create(&some_thread, ...) == -1)

{

perror("Thread creation error");

exit(1);

}

The semaphore library will print a message and exit on erorrs.

Some useful functions not covered in the examples:

pthread yield(); Informs the scheduler that the thread is willing to yield its quantum,
requires no arguments.

pthread t me;

me = pthread self(); Allows a pthread to obtain its own identifier
pthread t thread;

pthread detach(thread); Informs the library that the thread’s exit status will not be needed by
subsequent pthread join calls, resulting in better threads performance.

For more information consult the library or the man pages, e.g., man -k pthread .

9

Appendix A - Semaphore Library Code

/*

* File: semaphore.h

*/

#include <stdio.h>

#include <pthread.h>

#ifndef SEMAPHORES

#define SEMAPHORES

typedef struct Semaphore

{

int v;

pthread_mutex_t mutex;

pthread_cond_t cond;

}

Semaphore;

int sem_P (Semaphore * s);

int sem_V (Semaphore * s);

void sem_destroy (Semaphore * s);

void sem_init (Semaphore * s);

void sem_valinit (Semaphore * s,int x);

int sem_value (Semaphore * s);

void do_error (char *msg);

#endif

/*

* File: semaphore.c

*/

#include "semaphore.h"

/*

* function must be called prior to semaphore use.

*

*/

void sem_init (Semaphore * s)

{

s->v = 1;

if (pthread_mutex_init (&(s->mutex), NULL) == -1)

do_error ("Error setting up semaphore mutex");

if (pthread_cond_init (&(s->cond), NULL) == -1)

do_error ("Error setting up semaphore condition signal");

} // END sem_init

void sem_valinit (Semaphore * s,int x)

{

s->v = x;

if (pthread_mutex_init (&(s->mutex), NULL) == -1)

do_error ("Error setting up semaphore mutex");

if (pthread_cond_init (&(s->cond), NULL) == -1)

do_error ("Error setting up semaphore condition signal");

} // END sem_valinit

10

/*

* function should be called when there is no longer a need for

* the semaphore.

*/

void sem_destroy (Semaphore * s)

{

if (pthread_mutex_destroy (&(s->mutex)) == -1)

do_error ("Error destroying semaphore mutex");

if (pthread_cond_destroy (&(s->cond)) == -1)

do_error ("Error destroying semaphore condition signal");

} // END sem_destroy

/*

* function increments the semaphore and signals any threads that

* are blocked waiting a change in the semaphore.

*/

int sem_V (Semaphore * s)

{

int value_after_op;

pthread_mutex_lock (&(s->mutex));

(s->v)++;

value_after_op = s->v;

pthread_mutex_unlock (&(s->mutex));

pthread_cond_signal (&(s->cond));

return(value_after_op);

} // END sem_V

/*

* function decrements the semaphore and blocks if the semaphore is

* <= 0 until another thread signals a change.

*/

int sem_P (Semaphore * s)

{

int value_after_op;

pthread_mutex_lock (&(s->mutex));

while (s->v <= 0)

{

pthread_cond_wait (&(s->cond), &(s->mutex));

}

(s->v)--;

value_after_op = s->v;

pthread_mutex_unlock (&(s->mutex));

return (value_after_op);

} // END sem_P

/*

* function returns the value of the semaphore at the time the

* critical section is accessed. obviously the value is not guarenteed

11

* after the function unlocks the critical section. provided only

* for casual debugging, a better approach is for the programmar to

* protect one semaphore with another and then check its value.

* an alternative is to simply record the value returned by semV

* or semP.

*/

int sem_value (Semaphore * s)

{

/* not for sync */

int value_after_op;

pthread_mutex_lock (&(s->mutex));

value_after_op = s->v;

pthread_mutex_unlock (&(s->mutex));

return (value_after_op);

} // END sem_value

/*

* function just prints an error message and exits

*/

void do_error (char *msg)

{

perror (msg);

exit (1);

}

12

