
Chapter 9 - Lecture
Stallings - 9e

2

Aim of Scheduling

• Assign processes to be executed by the
processor(s)

– Response time
– Throughput
– Processor utilization
– Tardiness etc.

3

Aim of Scheduling

• Assign processes to be executed by the
processor(s)

– Response time
– Throughput
– Processor utilization
– Tardiness etc.

4

Scheduling Environments

• Single vs. multiple processors
• Static vs. dynamic process arrival
• Preemptive vs. nonpreemptive
• Independent vs. dependent tasks
• etc.

5

Figure 9.1 Scheduling and Process State Transitions

Ready/
Suspend

New

Running Exit

Blocked

Long-term
scheduling

Long-term
scheduling

Medium-term
scheduling

Medium-term
scheduling

Short-term
scheduling

Ready

Blocked/
Suspend

Running

Ready

Blocked

Short Term

Medium Term

Long Term

Blocked,
Suspend

Ready,
Suspend

New Exit

Figure 9.2 Levels of Scheduling

8

Long-Term Scheduling

• Determines which programs are admitted
to the system for processing

• Controls the degree of
multiprogramming

• More processes, smaller percentage of
time each process is executed

9

Medium-Term Scheduling

• Part of the swapping function
• Based on the need to manage the degree

of multiprogramming

10

Short-Term Scheduling

• Known as the dispatcher
• Executes most frequently
• Invoked when an event occurs

– Clock interrupts
– I/O interrupts
– Operating system calls
– Signals

11

Short-Term Scheduling
Criteria

• User-oriented
– Response Time

• Elapsed time between the submission of a request
until there is output.

• System-oriented
– Effective and efficient utilization of the

processor

12

Short-Term Scheduling
Criteria

• Performance-related
– Quantitative
– Measurable such as response time and

throughput

13

14

Figure 9.3 Queuing Diagram for Scheduling

Event Wait

Time-out

Release
Ready Queue Short-term

scheduling

Medium-term

scheduling

Medium-term

scheduling

Interactive

users

Batch

jobs
Processor

Ready, Suspend Queue

Event

Occurs

Blocked, Suspend Queue

Blocked Queue

Long-term

scheduling

16

Priorities

• Scheduler will always choose a process
of higher priority over one of lower
priority

• Have multiple ready queues to represent
each level of priority

• Lower-priority may suffer starvation
– Allow a process to change its priority based

on its age or execution history

Figure 9.4 Priority Queuing

Event Wait

Event
occurs

Preemption

Dispatch
ReleaseRQ0

RQ1

RQn

Admit

Processor

Blocked Queue

18

Decision Mode
• Nonpreemptive

– Once a process is in the running state, it will continue
until it terminates or blocks itself for I/O

• Preemptive
– Currently running process may be interrupted and

moved to the Ready state by the operating system
– Allows for better service since any one process

cannot monopolize the processor for very long

19

Process Scheduling Example

20

First-Come-First-Served  
(FCFS)

• Each process joins the Ready queue
• When the current process ceases to execute,

the oldest process in the Ready queue is
selected

21

First-Come-First-Served  
(FCFS)

• Also called FIFO
• Performs much better for long processes

– A short process may have to wait a very long
time before it can execute

• Favors CPU-bound processes
– I/O processes have to wait until CPU-bound

process completes

22

Round-Robin

• Uses preemption based on a clock
– quantum q

• An amount of time is determined that
allows each process to use the processor
for that length of time

23

Round-Robin

• Clock interrupt is generated at periodic
intervals

• When an interrupt occurs, the currently
running process is placed in the read
queue

– Next ready job is selected
• Known as time slicing

Process allocated

time quantum

Time

Response time

s

Quantum

q

q - s

Figure 9.6 Effect of Size of Preemption Time Quantum

Interaction

complete

(a) Time quantum greater than typical interaction

Process allocated

time quantum

s

q

Process allocated

time quantum

Process

preempted

Other processes run

(b) Time quantum less than typical interaction

Interaction

complete

Figure 9.7 Queuing Diagram for Virtual Round-Robin Scheduler

I/O 1 Wait

I/O 2 Wait

I/O n Wait

Dispatch

Time-out

Release

Ready Queue

Admit

Processor

I/O 1 Queue

Auxiliary Queue

I/O 1

Occurs

I/O 2

Occurs

I/O n
Occurs

I/O 2 Queue

I/O n Queue

26

Shortest Process Next

• Nonpreemptive policy
• Process with shortest expected processing time

is selected next
• Short process jumps ahead of longer processes

27

Shortest Process Next

• Need to predict (or estimate) run time
• If estimated time for process not correct,

the operating system may abort it
• Possibility of starvation for longer

processes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

� = 0.2

� = 0.5

� = 0.8

10987654321

Age of Observation

C
o

e
ff

ic
ie

n
t

V
a

lu
e

Figure 9.8 Exponential Smoothing Coefficients

0

2

4

6

8

10

� = 0.8

� = 0.5

Simple Average

Observed value

2019181716151413121110987654321

0

5

10

15

20

� = 0.8

� = 0.5

Simple Average

Observed value

2019181716151413121110987654321

(a) Increasing function

(b) Decreasing function

 Figure 9.9 Use of Exponential Averaging

Time

Time

O
b

s
e
r
v
e
d

 o
r
 a

v
e
r
a
g
e
 v

a
lu

e
O

b
s
e
r
v
e
d

 o
r
 a

v
e
r
a
g
e
 v

a
lu

e

30

Shortest Remaining Time (SRT)

• Preemptive version of shortest process
next policy

• Must estimate processing time

31

Response Time and Ratio

• Response Ratio R is
– total time spent waiting and executing normalized to

the execution time
– w: waiting time (waiting for a processor)
– s: expected service (execution) time
– Note: In scheduling theory response time is called

flow time Fi = Ci - ri

• i.e., completion time minus ready time
• this is the sum of waiting and processing times

32

Highest Response Ratio Next
(HRRN)

• Choose next process with the greatest
response ratio

33

Feedback
• SPN, SRT and HRRN require that something

is known about the execution times
– e.g., expected execution time

• Alternative policies
– give preference to shorter tasks by penalizing tasks

that have been running longer

Figure 9.10 Feedback Scheduling

ReleaseRQ0
Admit

Processor

ReleaseRQ1

Processor

ReleaseRQn

Processor

35

Feedback
• Potential problems

– starvation
– low response times for longer tasks
– many solutions exists, e.g.,

• use fixed quantum
– q = 1

• use different quantum in consequent queues
– q = 2i for queue i
– starvation still possible though

» solution: “promote” jobs to higher queue after some
time

36

Feedback

• Don’t know remaining time process needs to
execute

37

38

39

utilization

average service time

turnaround time

arrival rate

Figure 9.15 Simulation Results for Waiting Time

Percentile of time required

W
a

it
 t

im
e

FCFS

FCFS

HRRN

HRRN

RR

(q = 1)

RR (q = 1)

FB

FB

SRT

SPN

SPN

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

9

10

41

Fair-Share Scheduling

• All previous approaches treat collection
of ready processes as single pool

• User’s application runs as a collection of
processes (threads)

– concern about the performance of the
application, not single process; (this changes
the game)

– need to make scheduling decisions based on
process sets

42

Fair-Share Scheduling

• Philosophy can be extended to
groups

– e.g. time-sharing system,
• all users from one department treated as

group
• the performance of that group should not

affect other groups significantly
– e.g. as many people from the group log in

performance degradation should be primarily
felt in that group

43

Fair-Share Scheduling

• Fair share
– each user is assigned a weight that

corresponds to the fraction of total use
of the resources

– scheme should operate approximately
linear
• e.g. if user A has twice the weight of user

B, then (in the long run), user A should do
twice the work than B.

Priority

Colored rectangle represents executing process

60 0
1
2
•
•

60

0
1
2
•
•

60

74 15
16
17
•
•

75

15
16
17
•
•

75

78 18
19
20
•
•

78

18
19
20
•
•

78

67 0
1
2
•
•

60

15
16
17
•
•

75

74 15 15
16
17
•
•

75

60 0
1
2
•
•

60

0
1
2
•
•

60

60 0 0
1
2
•
•

60

60 0 0

90 30 30

96 37 37

98 39 39 70 3 18 76 15 18

90 30 30

81 7 37 93 30 37

75 0 30

60 0 0

Process
CPU
count

Process A

Group 1 Group 2

Process B Process C
Group
CPU
count

Process
CPU
count

Group
CPU
count

Process
CPU
count

Group
CPU
countPriority Priority

Time
0

1

2

3

4

5

Figure 9.16 Example of Fair Share Scheduler—Three Processes, Two Groups

45

Traditional  
UNIX Scheduling

• Multilevel feedback using round robin
within each of the priority queues

• If a running process does not block or
complete within 1 second, it is
preempted

• Priorities are recomputed once per
second

• Base priority divides all processes into
fixed bands of priority levels

Priority
60 0

1
2
•
•

60

67 15

76 33

75 3067 15

60 0
1
2
•
•

60

60 0

60 0

75 30

63 7
8
9
•
•

67

68 16 76 33 63 7

75 30

63 7
8
9
•
•

67

67 15

60 0
1
2
•
•

60

60 0
CPU count

Process A Process B Process C
Priority CPU count Priority CPU count

Time
0

1

2

3

4

5

Figure 9.17 Example of Traditional UNIX Process Scheduling

Colored rectangle represents executing process

