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Aim of Scheduling

• Assign processes to be executed by the 
processor(s) 

– Response time 
– Throughput 
– Processor utilization  
– Tardiness etc.
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Scheduling Environments

• Single vs. multiple processors 
• Static vs. dynamic process arrival 
• Preemptive vs. nonpreemptive 
• Independent vs. dependent tasks 
• etc.
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Figure 9.1    Scheduling and Process State Transitions
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Figure 9.2    Levels of Scheduling
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Long-Term Scheduling

• Determines which programs are admitted 
to the system for processing 

• Controls the degree of 
multiprogramming 

• More processes, smaller percentage of 
time each process is executed
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Medium-Term Scheduling

• Part of the swapping function 
• Based on the need to manage the degree 

of multiprogramming
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Short-Term Scheduling

• Known as the dispatcher 
• Executes most frequently 
• Invoked when an event occurs 

– Clock interrupts 
– I/O interrupts 
– Operating system calls 
– Signals
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Short-Term Scheduling 
Criteria

• User-oriented 
– Response Time 

• Elapsed time between the submission of a request 
until there is output. 

• System-oriented 
– Effective and efficient utilization of the 

processor
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Short-Term Scheduling 
Criteria

• Performance-related 
– Quantitative 
– Measurable such as response time and 

throughput
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Figure 9.3    Queuing Diagram for Scheduling
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Priorities

• Scheduler will always choose a process 
of higher priority over one of lower 
priority 

• Have multiple ready queues to represent 
each level of priority 

• Lower-priority may suffer starvation 
– Allow a process to change its priority based 

on its age or execution history



Figure 9.4    Priority Queuing
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Decision Mode
• Nonpreemptive 

– Once a process is in the running state, it will continue 
until it terminates or blocks itself for I/O 

• Preemptive 
– Currently running process may be interrupted and 

moved to the Ready state by the operating system 
– Allows for better service since any one process 

cannot monopolize the processor for very long



19

Process Scheduling Example
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First-Come-First-Served  
(FCFS)

• Each process joins the Ready queue 
• When the current process ceases to execute, 

the oldest process in the Ready queue is 
selected
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First-Come-First-Served  
(FCFS)

• Also called FIFO 
• Performs much better for long processes 

– A short process may have to wait a very long 
time before it can execute 

• Favors CPU-bound processes 
– I/O processes have to wait until CPU-bound 

process completes
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Round-Robin

• Uses preemption based on a clock 
– quantum q 

• An amount of time is determined that 
allows each process to use the processor 
for that length of time
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Round-Robin

• Clock interrupt is generated at periodic 
intervals 

• When an interrupt occurs, the currently 
running process is placed in the read 
queue 

– Next ready job is selected 
• Known as time slicing
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Figure 9.7   Queuing Diagram for Virtual Round-Robin Scheduler
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Shortest Process Next

• Nonpreemptive policy 
• Process with shortest expected processing time 

is selected next 
• Short process jumps ahead of longer processes
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Shortest Process Next

• Need to predict (or estimate) run time 
• If estimated time for process not correct, 

the operating system may abort it 
• Possibility of starvation for longer 

processes
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Shortest Remaining Time (SRT)

• Preemptive version of shortest process 
next policy 

• Must estimate processing time
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Response Time and Ratio

• Response Ratio R is 
– total time spent waiting and executing normalized to 

the execution time 
– w: waiting time (waiting for a processor) 
– s:  expected service (execution) time 
– Note: In scheduling theory response time is called 

flow time Fi = Ci - ri 

• i.e., completion time minus ready time 
• this is the sum of waiting and processing times
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Highest Response Ratio Next 
(HRRN)

• Choose next process with the greatest 
response ratio
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Feedback
• SPN, SRT and HRRN require that something 

is known about the execution times 
– e.g., expected execution time 

• Alternative policies 
– give preference to shorter tasks by penalizing tasks 

that have been running longer 



Figure 9.10     Feedback Scheduling
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Feedback
• Potential problems 

– starvation 
– low response times for longer tasks 
– many solutions exists, e.g., 

• use fixed quantum 
–  q = 1 

• use different quantum in consequent queues 
– q = 2i  for queue i  
– starvation still possible though 

» solution: “promote” jobs to higher queue after some 
time
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Feedback

• Don’t know remaining time process needs to 
execute
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utilization 

average service time 

turnaround time

arrival rate 



Figure 9.15  Simulation Results for Waiting Time
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Fair-Share Scheduling

• All previous approaches treat collection 
of ready processes as single pool 

• User’s application runs as a collection of 
processes (threads) 

– concern about the performance of the 
application, not single process; (this changes 
the game) 

– need to make scheduling decisions based on 
process sets
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Fair-Share Scheduling

• Philosophy can be extended to 
groups  

– e.g. time-sharing system, 
• all users from one department treated as 

group 
• the performance of that group should not 

affect other groups significantly 
– e.g. as many people from the group log in 

performance degradation should be primarily 
felt in that group
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Fair-Share Scheduling

• Fair share 
– each user is assigned a weight that 

corresponds to the fraction of total use 
of the resources 

– scheme should operate approximately 
linear 
• e.g. if user A has twice the weight of user 

B, then (in the long run), user A should do 
twice the work than B.



Priority

Colored rectangle represents executing process

60 0
1
2
•
•

60

0
1
2
•
•

60

74 15
16
17
•
•

75

15
16
17
•
•

75

78 18
19
20
•
•

78

18
19
20
•
•

78

67 0
1
2
•
•

60

15
16
17
•
•

75

74 15 15
16
17
•
•

75

60 0
1
2
•
•

60

0
1
2
•
•

60

60 0 0
1
2
•
•

60

60 0 0

90 30 30

96 37 37

98 39 39 70 3 18 76 15 18

90 30 30

81 7 37 93 30 37

75 0 30

60 0 0

Process
CPU
count

Process A

Group 1 Group 2

Process B Process C
Group
CPU
count

Process
CPU
count

Group
CPU
count

Process
CPU
count

Group
CPU
countPriority Priority

Time
0

1

2

3

4

5

Figure 9.16    Example of Fair Share Scheduler—Three Processes, Two Groups



45

Traditional  
UNIX Scheduling

• Multilevel feedback using round robin 
within each of the priority queues 

• If a running process does not block or 
complete within 1 second, it is 
preempted 

• Priorities are recomputed once per 
second 

• Base priority divides all processes into 
fixed bands of priority levels
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