
Chapter 8 - Lecture
Stallings 9e

2

Hardware and Control
Structures

• Memory references are dynamically translated
into physical addresses at run time
– A process may be swapped in and out of main

memory such that it occupies different regions
• A process may be broken up into pieces that do

not need to be located contiguously in main
memory

• All pieces of a process do not need to be
loaded in main memory during execution

3

Execution of a Program

• Operating system brings into main
memory a few pieces of the program

• Resident set - portion of process that is
in main memory

• An interrupt is generated when an
address is needed that is not in main
memory (page fault)

• Operating system places the process in a
blocking state

4

Execution of a Program

• Piece of process that contains the logical
address is brought into main memory

– Operating system issues a disk I/O Read
request

– Another process is dispatched to run while
the disk I/O takes place

– An interrupt is issued when disk I/O complete
which causes the operating system to place
the affected process in the Ready state

5

Advantages of  
Breaking up a Process

• More processes may be maintained in
main memory

– Only load in some of the pieces of each
process

– With so many processes in main memory, it is
very likely a process will be in the Ready
state at any particular time

• A process may be larger than all of main
memory

6

Types of Memory

• Real (or physical) memory
– Main memory

• Logical memory
– what the processor sees

• Virtual memory
– Memory on disk
– Allows for effective multiprogramming and

relieves the user of tight constraints of main
memory

7

Thrashing

• Swapping out a piece of a process just
before that piece is needed

• The processor spends most of its time
swapping pieces rather than executing
user instructions

8

Principle of Locality

• Program and data references within a
process tend to cluster

• Only a few pieces of a process will be
needed over a short period of time

• Possible to make intelligent guesses
about which pieces will be needed in the
future

• This suggests that virtual memory may
work efficiently

9

Support Needed for  
Virtual Memory

• Hardware must support paging and/or
segmentation

• Operating system must be able to
management the movement of pages
and/or segments between secondary
memory and main memory

10

Paging

• Each process has its own page table
• Each page table entry contains the frame

number of the corresponding page in
main memory

• A bit is needed to indicate whether the
page is in main memory or not

11

Paging

P : present
M: modified

Page # Offset Frame #

Virtual Address Physical Address

Page

Frame

Offset

Offset

Figure 8.2 Address Translation in a Paging System

Program Paging Mechanism Main Memory

P
a
g
e
#

Page Table Ptrn bits

m bits

Register

Page Table

Frame #

+

13

Modify Bit in  
Page Table

• Modify bit is needed to indicate if the
page has been altered since it was last
loaded into main memory

• If no change has been made, the page
does not have to be written to the disk
when it needs to be swapped out

4-kbyte root

page table

4-Mbyte user

page table

Figure 8.3 A Two-Level Hierarchical Page Table

4-Gbyte user

address space

15

Page Tables

• The entire page table may take up too
much main memory

• Page tables are also stored in virtual
memory

• When a process is running, part of its
page table is in main memory

10 bits10 bits 12 bits

Root page

table ptr

Frame #

Virtual Address

4-kbyte page

table (contains

1024 PTEs)
Root page table

(contains 1024 PTEs)

Page

Frame

Offset

Figure 8.4 Address Translation in a Two-Level Paging System

+
+

Program Paging Mechanism Main Memory

17

Inverted Page Table

• Alternative to (multi-level) page table
– Used on PowerPC, UltraSPARC, and IA-64

architecture
– One entry in table for each physical memory

frame
– Page number portion of a virtual address is

mapped to a hash value
– Fixed proportion of real memory is required

for the tables regardless of the number of
processes

18

Inverted Page Table

• Page table entries:
– Page number
– Process identifier
– Control bits
– Chain pointer

Page # Offset

Frame #

m bits

m bits

n bits

n bits

Virtual Address

hash

function

Page #

Process

ID

Control

bits

Chain

Inverted Page Table

(one entry for each

physical memory frame)

Real Address

Offset

Figure 8.5 Inverted Page Table Structure

i

0

j

2
m 1

20

Translation Lookaside Buffer

• Each virtual memory reference can cause
two physical memory accesses

– One to fetch the page table
– One to fetch the data

• To overcome this problem a high-speed
cache is set up for page table entries

– Called Translation Lookaside Buffer (TLB)

• Contains page table entries that have
been most recently used

Page # Offset

Frame #

Virtual Address

Offset

Figure 8.6 Use of a Translation Lookaside Buffer

Offset

Load

page
Page Table

Main Memory
Secondary

Memory

Real Address

Translation

Lookaside Buffer

TLB hit

TLB miss

Page fault

Start

CPU checks the TLB

Page Table
Entry in

TLB?

Access Page Table

Update TLB

Yes

Yes

Yes

No

No

No

CPU Generates
Physical Address

OS Instructs CPU
to Read the Page

from Disk

CPU Activates
I/O Hardware

Page Fault
Handling Routine

Return to
Faulted Instruction

Page Tables
Updated

Figure 8.7 Operation of Paging and Translation Lookaside Buffer (TLB) [FURH87]

Perform Page
Replacement

Page Transferred
from Disk to

Main Memory

Page
in Main

Memory?

Memory
Full?

Page # Offset

Virtual Address

TLB Operation

Figure 8.9 Translation Lookaside Buffer and Cache Operation

Page Table

Main
Memory

TLB miss

Miss

Hit Value

TLB
hit

TLB

Tag Remainder

Real Address

Cache Operation

Cache+

Value

24

Page Size - A Tradeoff Space
• Smaller page size, less amount of internal

fragmentation
• Smaller page size, more pages required per

process
• More pages per process means larger page

tables
• Larger page tables means large portion of page

tables in virtual memory
• Secondary memory is designed to efficiently

transfer large blocks of data so a large page
size is better

25

Page Size

• Small page size, large number of pages
will be found in main memory

• As time goes on during execution, the
pages in memory will all contain
portions of the process near recent
references. Page faults low.

• Increased page size causes pages to
contain locations further from any recent
reference.

P

(a) Page Size

Figure 8.10 Typical Paging Behavior of a Program

Pa
ge

 F
au

lt
R

at
e

NW

(b) Number of Page Frames Allocated

Pa
ge

 F
au

lt
R

at
e

P = size of entire process
W = working set size
N = total number of pages in process

27

Example Page Sizes

28

Segmentation

• May be unequal, dynamic size
• Simplifies handling of growing data

structures
• Allows programs to be altered and

recompiled independently
• Lends itself to sharing data among

processes
• Lends itself to protection

29

Segment Tables

• Corresponding segment in main memory
• Each entry contains the length of the

segment
• A bit is needed to determine if segment

is already in main memory
• Another bit is needed to determine if the

segment has been modified since it was
loaded in main memory

30

Segment Table Entries

Seg #

S
e
g
 #

Offset = d

Seg Table Ptr

Virtual address

Register

Segment table

Physical address

Length Base

S
e
g
m

e
n

t

Base + d

d

Figure 8.11 Address Translation in a Segmentation System

+

+

Program Segmentation mechanism Main memory

32

Combined Paging and
Segmentation

• Paging is transparent to the programmer
• Segmentation is visible to the

programmer
• Each segment is broken into fixed-size

pages

33

Combined Segmentation and
Paging

Page #Seg #

S
e
g
#

Offset

Seg Table Ptr

Frame #

Virtual Address

Segment

Table

Page

Table

Page

Frame

Offset

Offset

Figure 8.12 Address Translation in a Segmentation/Paging System

+
+

P
a
g
e
#

Program Segmentation

Mechanism

Paging

Mechanism

Main Memory

Main MemoryAddress

Dispatcher

Process A

Process B

Process C

0

20K

No access
allowed

Branch instruction
(not allowed)

Reference to
data (allowed)

Reference to
data (not allowed)

35K

50K

80K
90K

140K

190K

Figure 8.13 Protection Relationships Between Segments

X

X

X

36

Fetch Policy

• Fetch Policy
– Determines when a page should be brought

into memory
– Demand paging only brings pages into main

memory when a reference is made to a
location on the page
• Many page faults when process first started

– Prepaging brings in more pages than needed
• More efficient to bring in pages that reside

contiguously on the disk

37

Placement Policy

• Determines where in real memory a
process piece is to reside

• Important in a segmentation system
• Paging or combined paging with

segmentation hardware performs address
translation

38

Replacement Policy

• Placement Policy
– Which page is to be replaced?
– Page removed should be the page least likely

to be referenced in the near future
– Most policies predict the future behavior on

the basis of past behavior

39

Replacement Policy

• Frame Locking
– If frame is locked, it may not be replaced
– Kernel of the operating system
– Control structures
– I/O buffers
– Associate a lock bit with each frame

40

Basic Replacement
Algorithms

• Optimal policy
– Selects for replacement that page for which

the time to the next reference is the longest
– Impossible to have perfect knowledge of

future events
– This policy is “wishful thinking”, but can

serve as a base-line when post-evaluating
different policies

41

Basic Replacement
Algorithms

• Least Recently Used (LRU)
– Replaces the page that has not been

referenced for the longest time
– By the principle of locality, this should be the

page least likely to be referenced in the near
future

– Each page could be tagged with the time of
last reference. This would require a great
deal of overhead.

42

Basic Replacement
Algorithms

• First-in, first-out (FIFO)
– Treats page frames allocated to a process as a

circular buffer
– Pages are removed in round-robin style
– Simplest replacement policy to implement
– Page that has been in memory the longest is

replaced
– These pages may be needed again very soon
– Performs relatively poorly

43

Basic Replacement
Algorithms

• Clock Policy
– Additional bit called a use bit
– When a page is first loaded in memory, the use bit is

set to 1
– When the page is referenced, the use bit is set to 1
– When it is time to replace a page, the first frame

encountered with the use bit set to 0 is replaced.
– During the search for replacement, each use bit set to

1 is changed to 0

44

Basic Algorithms

• Use “use” and “modify” bits
1. Scan for first frame with u=0, m=0
2. If 1) fails look for frame with u=0, m=1,

setting the use bits to 0 during scan
3. If 2) failed repeating 1) and 2) will find a

replacement

45

46

2

2 3 2 1 5 2 4 5 3 2 5 2

2

3

2

3

2

3

1

F

F

F F F F F F

F F F

F F

2

3

5

2

3

5

4

3

5

4

3

5

4

3

5

2

3

5

2

3

5

2

3

5

2 2

3

2

3

2

3

1

2

5

1

2

5

1

2

5

4

2

5

4

3

5

4

3

5

2

3

5

2

3

5

2

2 2

3

2

3

2

3

1

5

3

1

5

2

1

5

2

4

5

2

4

3

2

4

3

2

4

3

5

4

3

5

2

2* 2*

3*

2*

3*

2*

3*

1*

5*

3

1

F

F = page fault occurring after the frame allocation is initially filled

F F F F

5*

2*

1

5*

2*

4*

5*

2*

4*

3*

2

4

3*

2*

4

3*

2

5*

3*

2*

5*

OPT

Page address

stream

LRU

FIFO

CLOCK

Figure 8.14 Behavior of Four Page-Replacement Algorithms

0

6 8

Number of Frames Allocated

P
a
g
e
 F

a
u

lt
s
 p

e
r
 1

0
0
0
 R

e
fe

r
e
n

c
e
s

Figure 8.16 Comparison of Fixed-Allocation, Local Page Replacement Algorithms

10 12 14

5

10

15

20

25

30

35
FIFO

CLOCK

LRU

OPT

40

49

Resident Set Size

• Fixed-allocation
– Gives a process a fixed number of pages

within which to execute
– When a page fault occurs, one of the pages of

that process must be replaced
• Variable-allocation

– Number of pages allocated to a process varies
over the lifetime of the process

50

Fixed Allocation, Local Scope

• Decide ahead of time the amount of
allocation to give a process

– If allocation is too small, there will be a high
page fault rate

– If allocation is too large there will be too few
programs in main memory

51

Variable Allocation,  
Global Scope

• Easiest to implement
• Adopted by many operating systems
• Operating system keeps list of free

frames
• Free frame is added to resident set of

process when a page fault occurs
• If no free frame, replaces one from

another process

52

Variable Allocation,  
Local Scope

• When new process added, allocate
number of page frames based on
application type, program request, or
other criteria

• When page fault occurs, select page
from among the resident set of the
process that suffers the fault

• Reevaluate allocation from time to time

53

Cleaning Policy

• Demand cleaning
– A page is written out only when it has been

selected for replacement
• Precleaning

– Pages are written out in batches

54

Cleaning Policy

• Best approach uses page buffering
– Replaced pages are placed in two lists

• Modified and unmodified
– Pages in the modified list are periodically

written out in batches
• What is the motivation behind this strategy?

– Pages in the unmodified list are either
reclaimed if referenced again or lost when its
frame is assigned to another page

55

Load Control

• Determines the number of processes that
will be resident in main memory

– Too few processes, many occasions when all
processes will be blocked and much time will
be spent in swapping

– Too many processes will lead to thrashing

Figure 8.19 Multiprogramming Effects

Multiprogramming Level

Pr
oc

es
so

r
U

til
iz

at
io

n

57

Process Suspension

• If degree of multiprogramming is to be
reduced, suspend:

– Lowest priority process
– Faulting process

• This process does not have its working set in main
memory so it will be blocked anyway

– Last process activated
• This process is least likely to have its working set

resident

58

Process Suspension cont.

– Process with smallest resident set
• This process requires the least future effort to reload

– Largest process
• Obtains the most free frames

– Process with the largest remaining execution
window

59

UNIX and Solaris Memory
Management

• Paging System
– Page table
– Disk block descriptor
– Page frame data table
– Swap-use table

60

61

Figure 8.20 UNIX SVR4 Memory Management Formats

(a) Page table entry

(b) Disk block descriptor

(c) Page frame data table entry

(d) Swap-use table entry

Page frame number

Page state Reference
count

Reference
count

Page/storage
unit number

Logical
device

Block
number

Pfdata
pointer

Swap device number Device block number Type of storage

Age Pro-
tect

ValidRefe-
rence

Mod-
ify

Copy
on

write

back
hand

 fron
th

an
d

Beginning

of page list

End of

page list

Figure 8.21 Two-Handed Clock Page-Replacement Algorithm

h
a

n
d

s
p

r
e
a

d

64

Kernel Memory Allocator
• Lazy

buddy
system

65

Linux Memory Management

• Page directory
• Page middle directory
• Page table

Global Directory

cr3

register

Page

directory

Page middle

directory

Page table

Page frame

in physical

memory

Virtual address

Figure 8.23 Address Translation in Linux Virtual Memory Scheme

Middle Directory Page Table Offset

+

+

+

+

