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Hardware and Control 
Structures

• Memory references are dynamically translated 
into physical addresses at run time 
– A process may be swapped in and out of main  

memory such that it occupies different regions 
• A process may be broken up into pieces that do 

not need to be located contiguously in main 
memory 

• All pieces of a process do not need to be 
loaded in main memory during execution
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Execution of a Program

• Operating system brings into main 
memory a few pieces of the program 

• Resident set - portion of process that is 
in main memory 

• An interrupt is generated when an 
address is needed that is not in main 
memory (page fault) 

• Operating system places the process in a 
blocking state
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Execution of a Program

• Piece of process that contains the logical 
address is brought into main memory 

– Operating system issues a disk I/O Read 
request 

– Another process is dispatched to run while 
the disk I/O takes place 

– An interrupt is issued when disk I/O complete 
which causes the operating system to place 
the affected process in the Ready state
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Advantages of  
Breaking up a Process

• More processes may be maintained in 
main memory 

– Only load in some of the pieces of each 
process 

– With so many processes in main memory, it is 
very likely a process will be in the Ready 
state at any particular time 

• A process may be larger than all of main 
memory
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Types of Memory

• Real (or physical)  memory 
– Main memory 

• Logical memory 
– what the processor sees 

• Virtual memory 
– Memory on disk 
– Allows for effective multiprogramming and 

relieves the user of tight constraints of main 
memory
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Thrashing

• Swapping out a piece of a process just 
before that piece is needed 

• The processor spends most of its time 
swapping pieces rather than executing 
user instructions
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Principle of Locality

• Program and data references within a 
process tend to cluster 

• Only a few pieces of a process will be 
needed over a short period of time 

• Possible to make intelligent guesses 
about which pieces will be needed in the 
future 

• This suggests that virtual memory may 
work efficiently
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Support Needed for  
Virtual Memory

• Hardware must support paging and/or 
segmentation  

• Operating system must be able to 
management the movement of pages 
and/or segments between secondary 
memory and main memory
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Paging

• Each process has its own page table 
• Each page table entry contains the frame 

number of the corresponding page in 
main memory 

• A bit is needed to indicate whether the 
page is in main memory or not
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Paging

P  : present 
M: modified
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Modify Bit in  
Page Table

• Modify bit is needed to indicate if the 
page has been altered since it was last 
loaded into main memory 

• If no change has been made, the page 
does not have to be written to the disk 
when it needs to be swapped out
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Page Tables

• The entire page table may take up too 
much main memory 

• Page tables are also stored in virtual 
memory 

• When a process is running, part of its 
page table is in main memory
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Inverted Page Table

• Alternative to (multi-level) page table 
– Used on PowerPC, UltraSPARC, and IA-64 

architecture 
– One entry in table for each physical memory 

frame 
– Page number portion of a virtual address is 

mapped to a hash value 
– Fixed proportion of real memory is required 

for the tables regardless of the number of 
processes
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Inverted Page Table

• Page table entries: 
– Page number 
– Process identifier 
– Control bits 
– Chain pointer
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Translation Lookaside Buffer

• Each virtual memory reference can cause 
two physical memory accesses 

– One to fetch the page table 
– One to fetch the data 

• To overcome this problem a high-speed 
cache is set up for page table entries 

– Called Translation Lookaside Buffer (TLB)

• Contains page table entries that have 
been most recently used
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Page Size - A Tradeoff Space
• Smaller page size, less amount of internal 

fragmentation 
• Smaller page size, more pages required per 

process 
• More pages per process means larger page 

tables 
• Larger page tables means large portion of page 

tables in virtual memory 
• Secondary memory is designed to efficiently  

transfer large blocks of data so a large page 
size is better
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Page Size

• Small page size, large number of pages 
will be found in main memory 

• As time goes on during execution, the 
pages in memory will all contain 
portions of the process near recent 
references.  Page faults low. 

• Increased page size causes pages to 
contain locations further from any recent 
reference.  
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Example Page Sizes
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Segmentation

• May be unequal, dynamic size 
• Simplifies handling of growing data 

structures 
• Allows programs to be altered and 

recompiled independently 
• Lends itself to sharing data among 

processes 
• Lends itself to protection
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Segment Tables

• Corresponding segment in main memory 
• Each entry contains the length of the 

segment 
• A bit is needed to determine if segment 

is already in main memory 
• Another bit is needed to determine if the 

segment has been modified since it was 
loaded in main memory



30

Segment Table Entries
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Combined Paging and 
Segmentation

• Paging is transparent to the programmer 
• Segmentation is visible to the 

programmer 
• Each segment is broken into fixed-size 

pages
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Combined Segmentation and 
Paging
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Fetch Policy

• Fetch Policy 
– Determines when a page should be brought 

into memory 
– Demand paging only brings pages into main 

memory when a reference is made to a 
location on the page 
• Many page faults when process first started 

– Prepaging brings in more pages than needed 
• More efficient to bring in pages that reside 

contiguously on the disk
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Placement Policy

• Determines where in real memory a 
process piece is to reside 

• Important in a segmentation system 
• Paging or combined paging with 

segmentation hardware performs address 
translation
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Replacement Policy

• Placement Policy 
– Which page is to be replaced? 
– Page removed should be the page least likely 

to be referenced in the near future 
– Most policies predict the future behavior on 

the basis of past behavior
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Replacement Policy

• Frame Locking 
– If frame is locked, it may not be replaced 
– Kernel of the operating system 
– Control structures 
– I/O buffers 
– Associate a lock bit with each frame
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Basic Replacement 
Algorithms

• Optimal policy 
– Selects for replacement that page for which 

the time to the next reference is the longest 
– Impossible to have perfect knowledge of 

future events 
– This policy is “wishful thinking”, but can 

serve as a base-line when post-evaluating 
different policies



41

Basic Replacement 
Algorithms

• Least Recently Used (LRU) 
– Replaces the page that has not been 

referenced for the longest time 
– By the principle of locality, this should be the 

page least likely to be referenced in the near 
future 

– Each page could be tagged with the time of 
last reference.  This would require a great 
deal of overhead.
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Basic Replacement 
Algorithms

• First-in, first-out (FIFO) 
– Treats page frames allocated to a process as a 

circular buffer 
– Pages are removed in round-robin style 
– Simplest replacement policy to implement 
– Page that has been in memory the longest is 

replaced 
– These pages may be needed again very soon 
– Performs relatively poorly
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Basic Replacement 
Algorithms

• Clock Policy 
– Additional bit called a use bit 
– When a page is first loaded in memory, the use bit is 

set to 1 
– When the page is referenced, the use bit is set to 1 
– When it is time to replace a page, the first frame 

encountered  with the use bit set to 0 is replaced. 
– During the search for replacement, each use bit set to 

1 is changed to 0
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Basic Algorithms

• Use “use” and “modify” bits 
1. Scan for first frame with u=0, m=0 
2. If 1) fails look for frame with u=0, m=1, 

setting the use bits to 0 during scan 
3. If 2) failed repeating 1) and 2) will find a 

replacement
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Resident Set Size

• Fixed-allocation 
– Gives a process a fixed number of pages 

within which to execute 
– When a page fault occurs, one of the pages of 

that process must be replaced 
• Variable-allocation 

– Number of pages allocated to a process varies 
over the lifetime of the process
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Fixed Allocation, Local Scope

• Decide ahead of time the amount of 
allocation to give a process 

– If allocation is too small, there will be  a high 
page fault rate 

– If allocation is too large there will be too few 
programs in main memory
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Variable Allocation,  
Global Scope

• Easiest to implement 
• Adopted by many operating systems 
• Operating system keeps list of free 

frames 
• Free frame is added to resident set of 

process when a page fault occurs 
• If no free frame, replaces one from 

another process
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Variable Allocation,  
Local Scope

• When new process added, allocate 
number of page frames based on 
application type, program request, or 
other criteria 

• When page fault occurs, select page 
from among the resident set of the 
process that suffers the fault 

• Reevaluate allocation from time to time
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Cleaning Policy

• Demand cleaning 
– A page is written out only when it has been 

selected for replacement 
• Precleaning 

– Pages are written out in batches
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Cleaning Policy

• Best approach uses page buffering 
– Replaced pages are placed in two lists 

• Modified and unmodified 
– Pages in the modified list are periodically 

written out in batches 
• What is the motivation behind this strategy? 

– Pages in the unmodified list are either 
reclaimed if referenced again or lost when its 
frame is assigned to another page
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Load Control

• Determines the number of processes that 
will be resident in main memory 

– Too few processes, many occasions when all 
processes will be blocked and much time will 
be spent in swapping 

– Too many processes will lead to thrashing
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Process Suspension

• If degree of multiprogramming is to be 
reduced, suspend: 

– Lowest priority process 
– Faulting process 

• This process does not have its working set in main 
memory so it will be blocked anyway 

– Last process activated 
• This process is least likely to have its working set 

resident
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Process Suspension cont.

– Process with smallest resident set 
• This process requires the least future effort to reload 

– Largest process 
• Obtains the most free frames  

– Process with the largest remaining execution 
window
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UNIX and Solaris Memory 
Management

• Paging System 
– Page table 
– Disk block descriptor 
– Page frame data table 
– Swap-use table
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Figure 8.20  UNIX SVR4 Memory Management Formats
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Kernel Memory Allocator
• Lazy 

buddy 
system
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Linux Memory Management

• Page directory 
• Page middle directory 
• Page table
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