
Chapter 7 - Lecture
Stallings 9e

2

Memory Management

• Subdividing memory to accommodate
multiple processes

• Memory needs to be allocated to ensure
a reasonable supply of ready processes to
consume available processor time

3

Memory Management
Requirements

• Relocation
– Programmer does not know where the

program will be placed in memory when it is
executed

– While the program is executing, it may be
swapped to disk and returned to main
memory at a different location (relocated)

– Memory references must be translated in the
code to actual physical memory address

Process Control Block

Program

Data

Stack

Current top
of stack

Entry point
to program

Process control
information

Increasing
address
values

Branch
instruction

Reference
to data

Figure 7.1 Addressing Requirements for a Process

5

Memory Management
Requirements

• Protection
– Processes should not be able to reference memory

locations in another process without permission
– Impossible to check absolute addresses at compile

time
– Must be checked at run time
– Memory protection requirement must be satisfied by

the processor (hardware) rather than the operating
system (software)
• Operating system cannot anticipate all of the memory

references a program will make

6

Memory Management
Requirements

• Sharing
– Allow several processes to access the same

portion of memory
– Better to allow each process access to the

same copy of the program rather than have
their own separate copy

7

Memory Management
Requirements

• Logical Organization
– Programs are written in modules
– Modules can be written and compiled

independently
– Different degrees of protection given to

modules (read-only, execute-only)
– Share modules among processes

8

Memory Management
Requirements

• Physical Organization
– Memory available for a program plus its data

may be insufficient
• Overlaying allows various modules to be assigned

the same region of memory
– Programmer does not know how much space

will be available

9

Fixed Partitioning

• Equal-size partitions
– Any process whose size is less than or equal

to the partition size can be loaded into an
available partition

– If all partitions are full, the operating system
can swap a process out of a partition

– A program may not fit in a partition. The
programmer must design the program with
overlays

10

Fixed Partitioning

• Fixed partitioning in main memory is
inefficient.

– Any program, no matter how small, occupies
an entire partition.

– What about the memory left over if the
program does not fit perfectly.

– This is called internal fragmentation.

Operating System

8M

Operating System

8M

8M

2M

4M

6M

8M

8M

12M

16M

8M

8M

8M

8M

8M

8M

(a) Equal-size partitions (b) Unequal-size partitions

Figure 7.2 Example of Fixed Partitioning of a 64-Mbyte Memory

12

Placement Algorithm with
Partitions

• Equal-size partitions
– Because all partitions are of equal size, it

does not matter which partition is used
• Unequal-size partitions

– Can assign each process to the smallest
partition within which it will fit

– Queue for each partition
– Processes are assigned in such a way as to

minimize wasted memory within a partition

Operating

System

New

Processes

New

Processes

Operating

System

Figure 7.3 Memory Assignment for Fixed Partitioning

(a) One process queue per partition (b) Single queue

14

Dynamic Partitioning

• Partitions are of variable length and
number

• Process is allocated exactly as much
memory as required

• Eventually get holes in the memory. This
is called external fragmentation

• Must use compaction to shift processes
so they are contiguous and all free
memory is in one block

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

16

Dynamic Partitioning
Placement Algorithm

• Operating system must decide which free
block to allocate to a process.

– Let’s look at some algorithms.
• Best-fit algorithm

– Chooses the block that is closest in size to the
request

– Despite its name: worst performer overall
– Since smallest block is found for process, the

smallest amount of fragmentation is left
• leaves blocks too small to reallocate

– Memory compaction must be done more often

17

Dynamic Partitioning
Placement Algorithm

• First-fit algorithm
– Scans memory from the beginning and

chooses the first available block that is large
enough

– Fastest
– May have many process loaded in the front

end of memory that must be searched over
when trying to find a free block

18

Dynamic Partitioning
Placement Algorithm

• Next-fit
– Scans memory from the location of the last

placement
– More often allocate a block of memory at the

end of memory where the largest block is
found

– The largest block of memory is broken up
into smaller blocks

– Compaction is required to obtain a large
block at the end of memory

8M

12M

22M

18M

8M

6M

14M

36M

(a) Before

Last
allocated
block (14M)

8M

12M

6M

2M

8M

6M

14M

20 M

(b) After

Next Fit

Allocated block

Best Fit

First Fit

Figure 7.5 Example Memory Configuration before
and after Allocation of 16-Mbyte Block

Free block

Possible new allocation

20

Buddy System

• Entire space available is treated as a
single block of 2U

• If a request of size s such that
2U-1 < s <= 2U, entire block is allocated

– Otherwise block is split into two equal
buddies

– Process continues until smallest block greater
than or equal to s is generated

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

256K 256KD =256 KA = 128K C =64 K 64K

Figure 7.7 Tree Representation of Buddy System

1M

512K

256K

128K

64K

Leaf node for
allocated block

Leaf node for
unallocated block

Non-leaf node

23

Relocation
• When program loaded into memory the actual

(absolute) memory locations are determined
• A process may occupy different partitions

which means different absolute memory
locations during execution (from swapping)

• Compaction will also cause a program to
occupy a different partition which means
different absolute memory locations

24

Addresses
• Logical

– Reference to a memory location independent of the
current assignment of data to memory

– Translation must be made to the physical address
• Relative

– Address expressed as a location relative to some
known point

• Physical
– The absolute address or actual location in main

memory

Process Control Block

Program

Data

Stack

Figure 7.8 Hardware Support for Relocation

Comparator

Interrupt to

operating system

Absolute

address

Process image in

main memory

Relative address

Base Register

Bounds Register

Adder

26

Registers Used during
Execution

• Base register
– Starting address for the process

• Bounds register
– Ending location of the process

• These values are set when the process is
loaded or when the process is swapped
in

27

Registers Used during
Execution

• The value of the base register is added to
a relative address to produce an absolute
address

• The resulting address is compared with
the value in the bounds register

• If the address is not within bounds, an
interrupt is generated to the operating
system

28

Paging
• Partition memory into small equal fixed-size

chunks called page frames.
• Processes divided into pages as well
• Page frames and pages are of equal size

– try “pagesize” command
• Operating system maintains a page table for

each process
– Contains the frame location for each page in the

process
– Memory address consist of a page number and

offset within the page

29

Assignment of Process Pages to
Free Frames

30

Assignment of Process Pages to
Free Frames

00
11
22
33

Process A
page table

—0
—1
—2

Process B
page table

70
81
92
103

Process C
page table

40
51
62
113
124

Process D
page table

13
14

Free frame
list

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

32

Paging

• The page frames are of equal size.

Is this the same as fixed partitioning?

•With paging, data blocks are small (e.g., 4K)

•A program can occupy more than one page

•Pages need not be contiguous in memory

33

Segmentation

• All segments of all programs do not have
to be of the same length

• There is a maximum segment length
• Addressing consist of two parts

– a segment number and
– an offset

34

Segmentation

• Since segments are not equal,
segmentation may look a bit like
dynamic partitioning...

So is it the same or is
something different?

• A program may occupy more than one segment

• Segments need not be contiguous in memory

0000010111011110

(a) Partitioning

Relative address = 1502

U
se

r
pr

oc
es

s
(2

70
0

by
te

s)

0000010111011110

(b) Paging
(page size = 1K)

Logical address =

Page# = 1, Offset = 478

Logical address =

Segment# = 1, Offset = 752

Pa
ge

 0
Pa

ge
 1

Pa
ge

 2

In
te

rn
al

fr
ag

m
en

ta
tio

n

0001001011110000

(c) Segmentation

Se
gm

en
t 0

75
0

by
te

s
Se

gm
en

t 1
19

50
 b

yt
es

47
8 75

2

Figure 7.11 Logical Addresses

0

0
1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process
page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address
(a) Paging

000101
000110
011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address
(b) Segmentation

0010111011100
1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12 Examples of Logical-to-Physical Address Translation

Process Control Block

Program

Data

Stack

Figure 7.13 The Loading Function

Process image in

main memory

Program

Data

Object Code

Main memory

Figure 7.14 A Linking and Loading Scenario

Loader

Run-time
linker/
loader

x

Load
Module

Linker

Module 2

Module 1

Module n

Static
library

Dynamic
library

Dynamic
library

Symbolic

Addresses

JUMP X

X

Y

PROGRAM

DATA

(a) Object module

LOAD Y

Figure 7.15 Absolute and Relocatable Load Modules

Absolute

Addresses

JUMP 1424

1424

1024 0

2224

PROGRAM

DATA

(b) Absolute load module

LOAD 2224

Relative

Addresses

JUMP 400

400

1200

PROGRAM

DATA

(c) Relative load module

LOAD 1200

x

Main memory

addresses

JUMP 400

400 + x

1200 + x

PROGRAM

DATA

(d) Relative load module

loaded into main memory

starting at location x

LOAD 1200

Figure 7.16 The Linking Function

0

Relative

Addresses

JSR "L"

Return

Return

Return

L – 1

L

L + M – 1

L + M

L + M + N – 1

Module A

Module B

(b) Load module

JSR "L + M"

Module C

CALL B;

External

Reference to

Module B
Length L

Return

Module A

(a) Object modules

CALL C;

Length M

Module B

Return

Length N

Return

Module C

