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Deadlock

Permanent blocking of a set of processes
that either compete for system resources

or communicate with each other
No efticient solution

Involve conflicting needs for resources
by two or more processes
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(a) Deadlock possible (b) Deadlock

Figure 6.1 Illustration of Deadlock
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Reusable Resources

Used by only one process at a time and not
depleted by that use

Processes obtain resources that they later
release for reuse by other processes

E.g. Processors, I/O channels, main and secondary
memory, devices, and data structures such as files,
databases, and semaphores

Deadlock occurs 1f each process holds one

resource and requests the other



Example of Deadlock

Process P Process Q
Step  Action Step Action
Po Request (D) d, Request (T)
P Lock (D) q, Lock (T)
P, Request (T) d, Request (D)
P; Lock (T) Qs Lock (D)
P Perform function Qs Perform function
Ps Unlock (D) qs Unlock (T)
Ps Unlock (T) ds Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusable Resources

Now consider the following sequence:
PoP14041 P29



Another Example of Deadlock

Space 1s available for allocation of
200Kbytes, and the following sequence

of events occur

P1 P2

Request 80 Kbytes; Request 70 Kbytes;

Request 60 Kbytes; Request 80 Kbytes;

Deadlock occurs 1f both processes
progress to their second request



Consumable Resources

Created (produced) and destroyed
(consumed)

Interrupts, signals, messages, and
information in I/0 buffers

Deadlock may occur 1f a Receive
message 1s blocking

May take a rare combination of events to
cause deadlock



Example of Deadlock

Deadlock occurs 1f receive 1s blocking

P1 P2

Receive(P2); Receive(P1);

Send(P2, M1); Send(P1, M2);




Resource Allocation Graphs

Directed graph that depicts a state of the
system of resources and processes

P1 Requests ® Ra P1 Held by Ra

(a) Resouce is requested (b) Resource is held



Resource Allocation Graphs
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Figure 6.5 Examples of Resource Allocation Graphs



Conditions for Deadlock

Mutual exclusion
Only one process may use a resource at a
time

Hold-and-wait

A process may hold allocated resources
while awaiting assignment of others

No preemption

No resource can be forcibly removed from a
process holding 1t
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Conditions for Deadlock

Circular wait

A closed chain of processes exists, such that each
process holds at least one resource needed by the
next process 1n the chain

Pl P2

Rb

(¢) Circular wait

12



AN

Ra Rb Re Rd

Figure 6.6 Resource Allocation Graph for Figure 6.1b



Deadlock Approaches

e Prevent - eliminate conditions that cause deadlock
e Avoidance - don’t allow deadlock to occur

* Allow - then suffer consequences!



Deadlock Prevention

Mutual Exclusion
Must be supported by the operating system

Hold and Wait

Require a process request all of 1ts required
resources at one time



Deadlock Prevention

No Preemption

Process must release resource and request
again

Operating system may preempt a process to
require 1t releases 1ts resources

Circular Wait

Define a linear ordering of resource types



Deadlock Avoidance

A decision 1s made dynamically whether
the current resource allocation request

will, if granted, potentially lead to a
deadlock

Requires knowledge of future process
request



Two Approaches to
Deadlock Avoidance

Do not start a process 1f 1ts demands
might lead to deadlock

Do not grant an incremental resource

request to a process 1f this allocation
might lead to deadlock



Resource Allocation Denial

Banker s algorithm

State of the system: the current
allocation of resources to processes

Safe state: there 1s at least one sequence
that does not result in deadlock

Unsafe state: a state that 1s not safe



P1
P2
P3
P4

Determination of a Safe State
Initial State

P1
P2
P3
P4

Rl R2 R3 R1 R2 R3
3 2 2 Pl 1 0 0
6 1 3 P2 6 1 2
3 1 4 P3 2 1 1
4 2 2 P4 0 0 2
Claim matrix C Allocation matrix A
R1 R2 R3 R1 R2 R3
9 3 6 0 1 1

Resource vector R

(a) Initial state

Available vector V

R1 R2 R3
2 2 2
0 0 1
1 0 3
4 2 0

A




P1
P2
P3
P4

Determination of a Sate State

P2 Runs to Completion

Resource vector R

R R2 R3 R1 R2 R3
3 2 2 P1 1 0 0 P1
0 0 0 P2 0 0 0 P2
3 1 4 P3 2 1 1 P3
4 2 2 P4 0 0 2 P4
Claim matrix C Allocation matrix A
R1 R2 R3 R1 R2 R3
9 3 6 6 2 3

Available vector V

(b) P2 runs to completion

R1 R2 R3
2 2 2
0 0 0
1 0 3
4 2 0

C—-A




P1
P2
P3
P4

Determination of a Safe State

P1 Runs to Completion

R1 R2 R3 R1 R2 R3
0 0 0 P1 0 0 0 P1
0 0 0 P2 0 0 0 P2
3 1 4 P3 2 1 1 P3
4 2 2 P4 0 0 2 P4
Claim matrix C Allocation matrix A
R1 R2 R3 R1 R2 R3
S 3 6 7 2 3

Resource vector R Available vector V

(c) P1 runs to completion

R1 R2 R3
0 0 0
0 0 0
1 0 3
- 2 0

C—:




P1
P2
P3
P4

Determination of a Safte State

P3 Runs to Completion

Resource vector R

R1 R2 R3 Rl R2 R3
0 0 0 P1 0 0 0 P1
0 0 0 P2 0 0 0 P2
0 0 0 P3 0 0 0 P3
4 2 2 P4 0 0 2 P4
Claim matrix C Allocation matrix A
R1 R2 R3 Rl R2 R3
G 3 6 g 3 4

Available vector V

(d) P3 runs to completion

QIO O O




Pl
P2
P3
P4

Determination of an

Unsafe State

R1 R2 R3 R1 R2 R3
3 2 2 P1 1 0 0 P1
6 1 3 P2 5 1 1 P2
3 1 4 P3 2 1 1 P3
4 2 2 P4 0 0 2 P4
Claim matnx C Allocation matrix A
R1 R2 R3 R1 R2 R3
9 3 6 1 1 2
Resource vector R Available vector V

(a) Initial state

R1 R2 R3
2 2 2
1 0 2
1 0 3
4 2 0

C—.




Determination of an
Unsatfe State

R1 R2 R3 R1 R2 R3 R1 R2 R3
3 2 2 P1 2 0 1 P1 1 2 1
6 1 3 P2 5 1 1 P2 1 0 2
3 1 4 P3 2 1 1 P3 1 0 3
4 2 2 P4 0 0 2 P4 4 2 0

Claim matnx C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9 3 6 0 1 1
Resource vector R Available vector V

(b) P1 requests one unit each of R1 and R3




struct state {
int resource[m];
int available[m];
int claim[n][m];
int alloc[n][m];

(a) global data structures

if (alloc [i,*] + request [*] > claim [1i,*])

< error >; /* total request > claim*/
else if (request [*] > available [*])

< suspend process >;

else { /* simulate alloc */
< define newstate by:
alloc [i,*] = alloc [i,*] + request [*];
available [*] = available [*] - request [*] >;

}

if (safe (newstate))
< carry out allocation >;
else {
< restore original state >;
< suspend process >;

(b) resource allocation algorithm

boolean safe (state S) {
int currentavail[m];
process rest[<number of processes>];
currentavail = available;
rest = {all processes};
possible = true;
while (possible) {
<find a process Px in rest such that

claim [k,*] — alloc [k,*] <= currentavail;>
if (found) { /* simulate execution of Py */
currentavail = currentavail + alloc [k,*];
rest = rest - {Px};
}
else possible = false;
}
return (rest == null);

(c) test for safety algorithm (banker's algorithm)

Figure 6.9 Deadlock Avoidance Logic




Deadlock Avoidance

Maximum resource requirement must be
stated 1n advance

Processes under consideration must be
independent; no synchronization
requirements

There must be a fixed number of
resources to allocate

No process may exit while holding
resources
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Deadlock Detection

Two phase process

deadlock detection

figure out that deadlock occurred

deadlock resolution

do something to resolve 1t



Deadlock Detection Algorithm

Use Allocation and Available matrices from safety algorithm,
Create Request matrix Q

1. Mark each process that has a row 1n the Allocation matrix of all zeros. A process
that has no allocated resources cannot participate 1n a deadlock.

2. Initialize a temporary vector W to equal the Available vector.

3. Find an index i such that process i 1s currently unmarked and the ith row of Q
1s less than or equal to W.That 1s, Q;, = W,,for1 = k = m. If no such row is
found, terminate the algorithm.

4. If such arow is found, mark process i and add the corresponding row of the allo-
cation matrix to W.Thatis,set W, = W, + A, for1 = k = m. Return to step 3.



P1
P2
P3
P4

!\)

R1 R2 R3 R4 RS5 R1 R2 R3 R4 RS R1 R2 R3 R4 RS5
0 1 0 0 Pl 0 1 1 0 2 1 1 2 1
0 0 1 0 P2 1 0 0 0 Resource vector
0 O 0 0 P3 O] 0 1 0
1 0 1 0 P4 0] 0 O 0 R1 R2 R3 R4 R5
Request matrix Q Allocation matrix A OO0 ] 0O 1
Allocation vector
Figure 6.10 Example for Deadlock Detection
Mark P4. because P4 has no allocated resources.

SetW = (00001).

. 'The request of process P3 1s less than or equal to W, so mark P3 and set

W=W+ (00010)=(00011).

No other unmarked process has a row 1n Q that 1s less than or equal to W.
Therefore, terminate the algorithm.

The algorithm concludes with P1 and P2 unmarked, indicating these processes

are deadlocked.



Strategies once Deadlock

Detected

Abort all deadlocked processes

Back up each deadlocked process to
some previously defined checkpoint, and
restart all process

Original deadlock may reoccur

Successively abort deadlocked processes
until deadlock no longer exists

Successively preempt resources until
deadlock no longer exists



Selection Criteria Deadlocked
Processes

Many criteria to select from, e.g.

Least amount of processor time consumed
so far

Least number of lines of output produced so
far

Most estimated time remaining

I east total resources allocated so far

Lowest priority



Strengths and Weaknesses of the
Strategies

Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance

Approaches for Operating Systems [ISLOS0]

Approach Resource Allocation Policy Different Schemes Major Advantages Major Disadvantages
*Works well for processes that performa | *Inefficient
Requesting all resources | single burst of activity *Delays process initiation
at once *No preemption necessary *Future resource requirements
must be known by processes
: : *Convenient when applied to resources
S Conservative: undercommits : ] PP ) *Preempts more often than
Prevention Preemption whose state can be saved and restored
resources : necessary
easily -
*Feasible to enforce via compile-time
: checks *Disallows incremental resource
Resource ordenng ; : .
*Needs no run-time computation since requests
problem is solved in system design
*Future resource requirements
Avoidance Midway between that of Manipulate to find at No preemption necessar must be known by OS
) detection and prevention least one safe path ~oP P s *Processes can be blocked for
long penods
: Very It : vok 1odically *Nev r :
Detection ery liberal; requested resources | Invoke peniodically to ever delays process initiation sInherent preemption losses

are granted where possible

test for deadlock

*Facilitates on-line handling




Figure 6.11 Dining Arrangement for Philosophers



/* program diningphilosophers */
semaphore fork [5] = {1};

int i;
void philosopher (int 1)
{

while (true) {
think();
wait (fork[i]);
wait (fork [(i+l) mod 5]);
eat();
signal(fork [(1+1l) mod 5]);
signal(fork[1i]);

}
}
void main()
{

parbegin (philosopher (0), philosopher (1), philosopher
(2),
philosopher (3), philosopher (4));

Figure 6.12 A First Solution to the Dining Philosophers Problem




/* program diningphilosophers */
semaphore fork[5] = {1};
semaphore room = {4};

int 1;
void philosopher (int 1)
{

while (true) {
think();
wait (room);
wait (fork[i]);
wait (fork [(i+1l) mod 5]);
eat();
signal (fork [(1i+1l) mod 5]);
signal (fork[1i]);
signal (room);

}
}
void main()
{
parbegin (philosopher (0), philosopher (1), philosopher (2),
philosopher (3), philosopher (4));
}

Figure 6.13 A Second Solution to the Dining Philosophers Problem




monitor dining controller;
cond ForkReady[5]; /* condition variable for synchronization
boolean fork[5] = {true}; /* availability status of each fork

void get forks(int pid) /* pid is the philosopher id number

{

}

int left = pid;
int right = (++pid) % 5;
/*grant the left fork*/
if (!fork[left])
cwait (ForkReady[left]); /* queue on condition variable
fork[left] = false;
/*grant the right fork*/
if (!fork[right])
cwait (ForkReady[right]); /* queue on condition variable
fork[right] = false:

void release forks(int pid)

{

int left = pid;

int right = (++pid) % 5;

/*release the left fork*/

if (empty(ForkReady[left]) /*no one is waiting for this fork
fork[left] = true;

else /* awaken a process waiting on this fork
csignal (ForkReady[left]);

/*release the right fork*/

if (empty(ForkReady[right]) /*no one is waiting for this fork
fork[right] = true;

else /* awaken a process waiting on this fork
csignal (ForkReady[right]);

5
&y

void philosopher[k=0 to 4] /* the five philosopher clients

{

while (true) {
<think>;
get forks(k); /* client requests two forks via monitor
<eat spaghetti>;
release forks(k); /* client releases forks via the monitor

Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor




UNIX Concurrency

Mechanisms
Pipes
Messages
Shared memory
Semaphores

Signals



UNIX Pipes

used to carry data from one process to
another

one process writes mnto the pipe
the other reads from the other end
essentially FIFO



UNIX Pipes

Examples
Is | pr | lpr
pipe Is 1nto the standard input of pr
pr pipes 1ts standard output to lpr

pr 1n this case 1s called a filter
Is > filea

pr < filea > fileb

read input from filea and output to fileb

13



Signals

Signals are a facility for handling
exceptional conditions similar to

software interrupts
Generated by keyboard interrupt, error in
a process, asynchronous events

timer

job control

Kill command can generate almost any
signal

14



Table 6.2 UNIX Signals

Value Name Description

01 SIGHUP Hang up: sent to process when kernel assumes that the
user of that process is doing no useful work

02 SIGINT Interrupt

03 SIGQUIT Quit; sent by user to induce halting of process and
production of core dump

04 SIGILL Illegal instruction

05 SIGTRAP Trace trap; triggers the execution of code for process
tracing

06 SIGIOT IOT instruction

07 SIGEMT EMT instruction

08 SIGFPE Floating-point exception

09 SIGKILL Kill; terminate process

10 SIGBUS Bus error

11 SIGSEGV Segmentation violation; process attempts to access
location outside its virtual address space

12 SIGSYS Bad argument to system call

13 SIGPIPE Write on a pipe that has no readers attached to it

14 SIGALRM Alarm clock; issued when a process wishes to receive a
signal after a period of time

15 SIGTERM Software termination

16 SIGUSRI1 User-defined signal 1

17 SIGUSR2 User-defined signal 2

18 SIGCHLD Death of a child

19 SIGPWR Power failure

15



Linux Kernel Concurrency
Mechanisms

Includes all the mechanisms found in
UNIX

Atomic operations execute without
interruption and without interference



Linux Atomic Operations

Atomic Integer Operations

ATOMIC INIT (int 1)

At declaration: initialize an atomic tto 1

int atomic read(atomic_t *v)

Read integer value of v

volid atomic__set(atomic t *v, int 1)

Set the value of v to integer 1

vold atomic_add(int 1, atomic _t *v)

Additowv

volid atomic_sub(int 1, atomic t *v)

Subtract 1 from v

volid atomic__inc(atomic t *v)

Addltowv

volid atomic__dec(atomic t *v)

Subtract 1 from v

int atomic_sub _and test(int i, atomic_t
*VJ)

Subtract 1 from v; return 1 if the result is zero:
return 0 otherwise

int atomic _add negative(int 1, atomic_t
*vvr)

Add 1 to v; return 1 if the result is negative;
return 0 otherwise (used for implementing
semaphores)

int atomic_dec_and_test(atomic_t *v)

Subtract 1 from v; return 1 if the result is zero;
return 0 otherwise

int atomic _inc and test(atomic t *v)

Add 1 to v; return 1 if the result 1s zero: return
0 otherwise




Linux Atomic Operations

Atomic Bitmap Operations

vold set bit (int nr, void *addr)

Set bit nr in the bitmap pointed to by addr

volid clear bit(int nr, wvoid *addr)

Clear bit nr in the bitmap pointed to by addr

vold change bit(int nr, void *addr)

Invert bit nr in the bitmap pointed to by addr

int test _and _set bit(int nr, void *addr)

Set bit nr in the bitmap pointed to by addr;
return the old bit value

int test_and_clear bit (int nr, vold *addr)

Clear bit nr in the bitmap pointed to by addr;
return the old bit value

int test_and_change bit(int nr, void
*addr)

Invert bit nr in the bitmap pointed to by addr;
return the old bit value

int test _bit (int nr, volid *addr)

Return the value of bit nr in the bitmap pointed
to by addr




Memory Barrier

A class of instructions

Enforces that CPU executes memory
operations in order

Why would one need to enforce in-order
execution?
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Memory Barrier Operations

Consider the following 2 processes
Proc #1:

loop: load the value of location vy,
if 1t 1s 0 goto loop
print the value 1n location x

Proc #2:

store the value 55 into location x
store the value 1 into location y

What 1s the output?

23



Linux Kernel Concurrency
Mechanisms

Table 6.6 Linux Memoryv Barrier Operations

rmb () Prevents loads from being reordered across the barrier

wmb () Prevents stores from being reordered across the barrier

mb () Prevents loads and stores from being reordered across the barrier
barrier () Prevents the compiler from reordering loads or stores across the barrier
smp_rmo () On SMP. provides a rmb () and on UP providesabarrier ()
smp_wmb () On SMP. provides a wmb () and on UP providesabarrier ()

smp mbo () On SMP, provides amb () and on UP provides abarrier ()

SMP = symmetric multiprocessor
UP = uniprocessor




Solaris Thread
Synchronization Primitives

Mutual exclusion (mutex) locks
Semaphores

Multiple readers, single writer
(readers/writer) locks

Condition variables



Type (1 octet)

owner (3 octets) wlock (1 octet)

waiters (2 octets)

lock (1 octet)

union (4 octets)
(statistic pointer or
number of write requests)

waiters (2 octets)

type specific info (4 octets)
(possibly a turnstile id,
lock type filler,
or statistics pointer)

thread owner (4 octets)

(a) MUTEX lock

(c) Reader/writer lock

Type (1 octet)
wlock (1 octet)

waiters (2 octets) waiters (2 octets)

count (4 octets) (d) Condition variable

(b) Semaphore

Figure 6.15 Solaris Synchronization Data Structures



Table 6.7 Windows Synchronization Objects

Object Type

Definition

Set to Signaled State When

Effect on Waiting Threads

An announcement that a system

Event Thread sets the event All released
event has occurred
= mec.hamsm th.a t Pro.wde.s ST Owning thread or other thread
Mutex exclusion capabilities; equivalent One thread released
: releases the mutex
to a binary semaphore
A counter that regulates the
Semaphore number of threads that can use a Semaphore count drops to zero All released
resource
Waitable timer A c..ounter that records the passage  Set .tlme arrives or time interval Al released
of time expires
File change A notification of any file system Change occurs in file system that
notification changes. matches filter criteria of this object QiEirE e
A text window screen buffer (e.g..
Console input used to handle screen I'O for an Input is available for processing One thread released
MS-DOS application)
An instance of an opened file or ,. :
Job 1O device IO operation completes All released
Memory resource A notification of change to a Specified tvpe of change occurs
P " : All released
notification memory resource within physical memory
A program invocation, including
Process the address space and resources Last thread terminates All released
required to run the program
Thread LRI EIE T Thread terminates All released

process

Note: Colored rows correspond to objects that exist for the sole purpose of synchronization.




