
Chapter 6 lecture
Stalling 9ed

1

Deadlock

• Permanent blocking of a set of processes
that either compete for system resources
or communicate with each other

• No efficient solution
• Involve conflicting needs for resources

by two or more processes

c b

d a

(a) Deadlock possible (b) Deadlock

Figure 6.1 Illustration of Deadlock

4 4

1

1

3

32 2

3

Better illustrations J

4

Reusable Resources
• Used by only one process at a time and not

depleted by that use
• Processes obtain resources that they later

release for reuse by other processes
– E.g. Processors, I/O channels, main and secondary

memory, devices, and data structures such as files,
databases, and semaphores

• Deadlock occurs if each process holds one
resource and requests the other

5

Example of Deadlock

Now consider the following sequence:
p0 p1 q0 q1 p2 q2

6

Another Example of Deadlock

• Space is available for allocation of
200Kbytes, and the following sequence
of events occur

• Deadlock occurs if both processes
progress to their second request

P1

. . .

. . .
Request 80 Kbytes;

Request 60 Kbytes;

P2

. . .

. . .
Request 70 Kbytes;

Request 80 Kbytes;

7

Consumable Resources

• Created (produced) and destroyed
(consumed)

• Interrupts, signals, messages, and
information in I/O buffers

• Deadlock may occur if a Receive
message is blocking

• May take a rare combination of events to
cause deadlock

8

Example of Deadlock

• Deadlock occurs if receive is blocking

P1

. . .

. . .
Receive(P2);

Send(P2, M1);

P2

. . .

. . .
Receive(P1);

Send(P1, M2);

9

Resource Allocation Graphs
• Directed graph that depicts a state of the

system of resources and processes

10

Resource Allocation Graphs

11

Conditions for Deadlock

• Mutual exclusion
– Only one process may use a resource at a

time
• Hold-and-wait

– A process may hold allocated resources
while awaiting assignment of others

• No preemption
– No resource can be forcibly removed from a

process holding it

12

Conditions for Deadlock
• Circular wait

– A closed chain of processes exists, such that each
process holds at least one resource needed by the
next process in the chain

P1

Ra

P2

Rb

P3

Rc

P4

Rd

Figure 6.6 Resource Allocation Graph for Figure 6.1b

Deadlock Approaches

• Prevent - eliminate conditions that cause deadlock

• Avoidance - don’t allow deadlock to occur

• Allow - then suffer consequences!

1

Deadlock Prevention

• Mutual Exclusion
– Must be supported by the operating system

• Hold and Wait
– Require a process request all of its required

resources at one time

2

Deadlock Prevention

• No Preemption
– Process must release resource and request

again
– Operating system may preempt a process to

require it releases its resources
• Circular Wait

– Define a linear ordering of resource types

3

Deadlock Avoidance

• A decision is made dynamically whether
the current resource allocation request
will, if granted, potentially lead to a
deadlock

• Requires knowledge of future process
request

4

Two Approaches to
Deadlock Avoidance

• Do not start a process if its demands
might lead to deadlock

• Do not grant an incremental resource
request to a process if this allocation
might lead to deadlock

5

Resource Allocation Denial

• Banker�s algorithm
• State of the system: the current

allocation of resources to processes
• Safe state: there is at least one sequence

that does not result in deadlock
• Unsafe state: a state that is not safe

6

Determination of a Safe State
Initial State

7

Determination of a Safe State
P2 Runs to Completion

8

Determination of a Safe State
P1 Runs to Completion

9

Determination of a Safe State
P3 Runs to Completion

10

Determination of an
Unsafe State

11

Determination of an
Unsafe State

struct state {
 int resource[m];
 int available[m];
 int claim[n][m];
 int alloc[n][m];
}

(a) global data structures

if (alloc [i,*] + request [*] > claim [i,*])
 < error >; /* total request > claim*/
else if (request [*] > available [*])
 < suspend process >;
else { /* simulate alloc */
 < define newstate by:
 alloc [i,*] = alloc [i,*] + request [*];
 available [*] = available [*] - request [*] >;
}
if (safe (newstate))
 < carry out allocation >;
else {
 < restore original state >;
 < suspend process >;
}

(b) resource allocation algorithm

boolean safe (state S) {
 int currentavail[m];
 process rest[<number of processes>];
 currentavail = available;
 rest = {all processes};
 possible = true;
 while (possible) {
 <find a process Pk in rest such that
 claim [k,*] – alloc [k,*] <= currentavail;>
 if (found) { /* simulate execution of Pk */
 currentavail = currentavail + alloc [k,*];
 rest = rest - {Pk};
 }
 else possible = false;
 }
 return (rest == null);
}

(c) test for safety algorithm (banker's algorithm)

Figure 6.9 Deadlock Avoidance Logic

14

Deadlock Avoidance
• Maximum resource requirement must be

stated in advance
• Processes under consideration must be

independent; no synchronization
requirements

• There must be a fixed number of
resources to allocate

• No process may exit while holding
resources

1

Deadlock Detection

• Two phase process
– deadlock detection

• figure out that deadlock occurred
– deadlock resolution

• do something to resolve it

Deadlock Detection Algorithm
Use Allocation and Available matrices from safety algorithm,
Create Request matrix Q

 R1 R2 R3 R4 R5 R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

P1 0 1 0 0 1 P1 1 0 1 1 0 2 1 1 2 1

P2 0 0 1 0 1 P2 1 1 0 0 0 Resource vector

P3 0 0 0 0 1 P3 0 0 0 1 0

P4 1 0 1 0 1 P4 0 0 0 0 0 R1 R2 R3 R4 R5

 Request matrix Q Allocation matrix A 0 0 0 0 1

 Allocation vector

Figure 6.10 Example for Deadlock Detection

3

Strategies once Deadlock
Detected

• Abort all deadlocked processes
• Back up each deadlocked process to

some previously defined checkpoint, and
restart all process
– Original deadlock may reoccur

• Successively abort deadlocked processes
until deadlock no longer exists

• Successively preempt resources until
deadlock no longer exists

4

Selection Criteria Deadlocked
Processes

• Many criteria to select from, e.g.
– Least amount of processor time consumed

so far
– Least number of lines of output produced so

far
– Most estimated time remaining
– Least total resources allocated so far
– Lowest priority

5

Strengths and Weaknesses of the
Strategies

P3

Figure 6.11 Dining Arrangement for Philosophers

P0

P2

P4

P1

/* program diningphilosophers */
semaphore fork [5] = {1};
int i;
void philosopher (int i)
{
 while (true) {
 think();
 wait (fork[i]);
 wait (fork [(i+1) mod 5]);
 eat();
 signal(fork [(i+1) mod 5]);
 signal(fork[i]);
 }
}
void main()
{
 parbegin (philosopher (0), philosopher (1), philosopher
(2),
 philosopher (3), philosopher (4));
 }

Figure 6.12 A First Solution to the Dining Philosophers Problem

/* program diningphilosophers */
semaphore fork[5] = {1};
semaphore room = {4};
int i;
void philosopher (int i)
{
 while (true) {
 think();
 wait (room);
 wait (fork[i]);
 wait (fork [(i+1) mod 5]);
 eat();
 signal (fork [(i+1) mod 5]);
 signal (fork[i]);
 signal (room);
 }

}
void main()
{
 parbegin (philosopher (0), philosopher (1), philosopher (2),
 philosopher (3), philosopher (4));
}

Figure 6.13 A Second Solution to the Dining Philosophers Problem

monitor dining_controller;
cond ForkReady[5]; /* condition variable for synchronization */
boolean fork[5] = {true}; /* availability status of each fork */

void get_forks(int pid) /* pid is the philosopher id number */
{
 int left = pid;
 int right = (++pid) % 5;
 /*grant the left fork*/
 if (!fork[left])
 cwait(ForkReady[left]); /* queue on condition variable */
 fork[left] = false;
 /*grant the right fork*/
 if (!fork[right])
 cwait(ForkReady[right]); /* queue on condition variable */
 fork[right] = false:
}
void release_forks(int pid)
{
 int left = pid;
 int right = (++pid) % 5;
 /*release the left fork*/
 if (empty(ForkReady[left]) /*no one is waiting for this fork */
 fork[left] = true;
 else /* awaken a process waiting on this fork */
 csignal(ForkReady[left]);
 /*release the right fork*/
 if (empty(ForkReady[right]) /*no one is waiting for this fork */
 fork[right] = true;
 else /* awaken a process waiting on this fork */
 csignal(ForkReady[right]);
}

void philosopher[k=0 to 4] /* the five philosopher clients */
{
 while (true) {
 <think>;
 get_forks(k); /* client requests two forks via monitor */
 <eat spaghetti>;
 release_forks(k); /* client releases forks via the monitor */
 }
}

Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor

11

UNIX Concurrency
Mechanisms

• Pipes
• Messages
• Shared memory
• Semaphores
• Signals

12

UNIX Pipes

• used to carry data from one process to
another

• one process writes into the pipe
• the other reads from the other end
• essentially FIFO

13

UNIX Pipes

• Examples
– ls | pr | lpr

• pipe ls into the standard input of pr
• pr pipes its standard output to lpr
• pr in this case is called a filter

– ls > filea
– pr < filea > fileb

• read input from filea and output to fileb

14

Signals

• Signals are a facility for handling
exceptional conditions similar to
software interrupts

• Generated by keyboard interrupt, error in
a process, asynchronous events
– timer
– job control

• Kill command can generate almost any
signal

15

16

Linux Kernel Concurrency
Mechanisms

• Includes all the mechanisms found in
UNIX

• Atomic operations execute without
interruption and without interference

17

Linux Atomic Operations

18

Linux Atomic Operations

22

Memory Barrier

• A class of instructions
• Enforces that CPU executes memory

operations in order

• Why would one need to enforce in-order
execution?

23

Memory Barrier Operations

• Consider the following 2 processes
Proc #1:

loop: load the value of location y,
if it is 0 goto loop

print the value in location x
Proc #2:

store the value 55 into location x
store the value 1 into location y

• What is the output?

24

Linux Kernel Concurrency
Mechanisms

25

Solaris Thread
Synchronization Primitives

• Mutual exclusion (mutex) locks
• Semaphores
• Multiple readers, single writer

(readers/writer) locks
• Condition variables

(a) MUTEX lock

(b) Semaphore

(c) Reader/writer lock

(d) Condition variable

owner (3 octets)

lock (1 octet)

Type (1 octet)
wlock (1 octet)

waiters (2 octets)

Type (1 octet)
wlock (1 octet)

waiters (2 octets)

 waiters (2 octets)

thread owner (4 octets)

union (4 octets)
(statistic pointer or

number of write requests)

count (4 octets)

waiters (2 octets)

type specific info (4 octets)
(possibly a turnstile id,

lock type filler,
or statistics pointer)

Figure 6.15 Solaris Synchronization Data Structures

27

