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Deadlock

• Permanent blocking of a set of processes 
that either compete for system resources 
or communicate with each other

• No efficient solution
• Involve conflicting needs for resources 

by two or more processes
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Figure 6.1   Illustration of Deadlock
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Better illustrations J
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Reusable Resources
• Used by only one process at a time and not 

depleted by that use
• Processes obtain resources that they later 

release for reuse by other processes
– E.g. Processors, I/O channels, main and secondary 

memory, devices, and data structures such as files, 
databases, and semaphores

• Deadlock occurs if each process holds one 
resource and requests the other
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Example of Deadlock

Now consider the following sequence:
p0 p1 q0 q1 p2 q2
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Another Example of Deadlock

• Space is available for allocation of 
200Kbytes, and the following sequence 
of events occur

• Deadlock occurs if both processes 
progress to their second request

P1

. . .

. . .
Request 80 Kbytes;

Request 60 Kbytes;

P2

. . .

. . .
Request 70 Kbytes;

Request 80 Kbytes;
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Consumable Resources

• Created (produced) and destroyed 
(consumed)

• Interrupts, signals, messages, and 
information in I/O buffers

• Deadlock may occur if a Receive 
message is blocking

• May take a rare combination of events to 
cause deadlock
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Example of Deadlock

• Deadlock occurs if receive is blocking

P1

. . .

. . .
Receive(P2);

Send(P2, M1);

P2

. . .

. . .
Receive(P1);

Send(P1, M2);
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Resource Allocation Graphs
• Directed graph that depicts a state of the 

system of resources and processes
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Resource Allocation Graphs
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Conditions for Deadlock

• Mutual exclusion
– Only one process may use a resource at a 

time
• Hold-and-wait

– A process may hold allocated resources 
while awaiting assignment of others

• No preemption
– No resource can be forcibly removed from a 

process holding it
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Conditions for Deadlock
• Circular wait

– A closed chain of processes exists, such that each 
process holds at least one resource needed by the 
next process in the chain



P1

Ra

P2

Rb

P3

Rc

P4

Rd

Figure 6.6   Resource Allocation Graph for Figure 6.1b



Deadlock Approaches

• Prevent - eliminate conditions that cause deadlock


• Avoidance - don’t allow deadlock to occur


• Allow - then suffer consequences!
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Deadlock Prevention

• Mutual Exclusion
– Must be supported by the operating system

• Hold and Wait
– Require a process request all of its required 

resources at one time
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Deadlock Prevention

• No Preemption
– Process must release resource and request 

again
– Operating system may preempt a process to 

require it releases its resources
• Circular Wait

– Define a linear ordering of resource types
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Deadlock Avoidance

• A decision is made dynamically whether 
the current resource allocation request 
will, if granted, potentially lead to a 
deadlock

• Requires knowledge of future process 
request
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Two Approaches to 
Deadlock Avoidance

• Do not start a process if its demands 
might lead to deadlock

• Do not grant an incremental resource 
request to a process if this allocation 
might lead to deadlock
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Resource Allocation Denial

• Banker�s algorithm
• State of the system: the current 

allocation of resources to processes
• Safe state: there is at least one sequence 

that does not result in deadlock
• Unsafe state: a state that is not safe
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Determination of a Safe State
Initial State
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Determination of a Safe State
P2 Runs to Completion
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Determination of a Safe State
P1 Runs to Completion
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Determination of a Safe State
P3 Runs to Completion
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Determination of an 
Unsafe State



11

Determination of an 
Unsafe State



 
struct state { 
 int resource[m]; 
 int available[m]; 
 int claim[n][m]; 
 int alloc[n][m]; 
} 

 
(a) global data structures 

 
if (alloc [i,*] + request [*] > claim [i,*])  
 < error >; /* total request > claim*/ 
else if (request [*] > available [*])  
 < suspend process >; 
else {  /* simulate alloc */ 
 < define newstate by: 
 alloc [i,*] = alloc [i,*] + request [*]; 
 available [*] = available [*] - request [*] >; 
} 
if (safe (newstate)) 
 < carry out allocation >; 
else { 
 < restore original state >; 
 < suspend process >; 
} 

 
(b) resource allocation algorithm 

 
boolean safe (state S) { 
 int currentavail[m]; 
 process rest[<number of processes>]; 
 currentavail = available; 
 rest = {all processes}; 
 possible = true; 
 while (possible) { 
  <find a process Pk in rest such that 
   claim [k,*] – alloc [k,*] <= currentavail;> 
  if (found) { /* simulate execution of Pk */ 
   currentavail = currentavail + alloc [k,*]; 
   rest = rest - {Pk}; 
  } 
  else possible = false;  
 } 
 return (rest == null); 
} 

 
(c) test for safety algorithm (banker's algorithm) 

 
Figure 6.9  Deadlock Avoidance Logic 
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Deadlock Avoidance
• Maximum resource requirement must be 

stated in advance
• Processes under consideration must be 

independent; no synchronization 
requirements

• There must be a fixed number of 
resources to allocate

• No process may exit while holding 
resources
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Deadlock Detection

• Two phase process
– deadlock detection 

• figure out that deadlock occurred
– deadlock resolution

• do something to resolve it



Deadlock Detection Algorithm
Use Allocation and Available matrices from safety algorithm, 
Create Request matrix Q



 

 R1 R2 R3 R4 R5   R1 R2 R3 R4 R5  R1 R2 R3 R4 R5 

P1 0 1 0 0 1  P1 1 0 1 1 0  2 1 1 2 1 

P2 0 0 1 0 1  P2 1 1 0 0 0  Resource vector 

P3 0 0 0 0 1  P3 0 0 0 1 0       

P4 1 0 1 0 1  P4 0 0 0 0 0  R1 R2 R3 R4 R5 

 Request matrix Q   Allocation matrix A  0 0 0 0 1 

              Allocation vector 
 

Figure 6.10   Example for Deadlock Detection 
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Strategies once Deadlock 
Detected

• Abort all deadlocked processes
• Back up each deadlocked process to 

some previously defined checkpoint, and 
restart all process
– Original deadlock may reoccur

• Successively abort deadlocked processes 
until deadlock no longer exists

• Successively preempt resources until 
deadlock no longer exists
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Selection Criteria Deadlocked 
Processes

• Many criteria to select from, e.g.
– Least amount of processor time consumed 

so far
– Least number of lines of output produced so 

far
– Most estimated time remaining
– Least total resources allocated so far
– Lowest priority
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Strengths and Weaknesses of the 
Strategies
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Figure 6.11   Dining Arrangement for Philosophers
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/* program diningphilosophers */ 
semaphore fork [5] = {1}; 
int i; 
void philosopher (int i) 
{  
 while (true) { 
  think(); 
  wait (fork[i]); 
  wait (fork [(i+1) mod 5]); 
  eat(); 
  signal(fork [(i+1) mod 5]); 
  signal(fork[i]); 
 } 
} 
void main()  
{ 
 parbegin (philosopher (0), philosopher (1), philosopher 
(2),  
  philosopher (3), philosopher (4)); 
 } 

 
 

Figure 6.12      A First Solution to the Dining Philosophers Problem 



 
/* program diningphilosophers */ 
semaphore fork[5] = {1}; 
semaphore room = {4}; 
int i; 
void philosopher (int i) 
{ 
 while (true) { 
  think(); 
  wait (room); 
  wait (fork[i]); 
  wait (fork [(i+1) mod 5]); 
  eat(); 
  signal (fork [(i+1) mod 5]); 
  signal (fork[i]); 
  signal (room); 
 } 
 
} 
void main()  
{ 
 parbegin (philosopher (0), philosopher (1), philosopher (2),  
   philosopher (3), philosopher (4)); 
} 

 
Figure 6.13   A Second Solution to the Dining Philosophers Problem 



 
monitor dining_controller; 
cond ForkReady[5]; /* condition variable for synchronization */ 
boolean fork[5] = {true}; /* availability status of each fork */ 
 
void get_forks(int pid) /* pid is the philosopher id number */ 
{ 
 int left = pid; 
 int right = (++pid) % 5; 
 /*grant the left fork*/ 
 if (!fork[left]) 
  cwait(ForkReady[left]); /* queue on condition variable */ 
 fork[left] = false; 
 /*grant the right fork*/ 
 if (!fork[right]) 
  cwait(ForkReady[right]); /* queue on condition variable */ 
 fork[right] = false: 
} 
void release_forks(int pid) 
{ 
 int left = pid; 
 int right = (++pid) % 5; 
 /*release the left fork*/ 
 if (empty(ForkReady[left]) /*no one is waiting for this fork */ 
  fork[left] = true; 
 else /* awaken a process waiting on this fork */ 
  csignal(ForkReady[left]); 
 /*release the right fork*/ 
 if (empty(ForkReady[right]) /*no one is waiting for this fork */ 
  fork[right] = true; 
 else /* awaken a process waiting on this fork */ 
  csignal(ForkReady[right]); 
} 
 
 
void philosopher[k=0 to 4] /* the five philosopher clients */ 
{ 
 while (true) { 
  <think>; 
  get_forks(k); /* client requests two forks via monitor */ 
  <eat spaghetti>; 
  release_forks(k); /* client releases forks via the monitor */ 
 } 
} 
 

Figure 6.14   A Solution to the Dining Philosophers Problem Using a Monitor 
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UNIX Concurrency 
Mechanisms

• Pipes
• Messages
• Shared memory
• Semaphores
• Signals



12

UNIX Pipes

• used to carry data from one process to 
another

• one process writes into the pipe
• the other reads from the other end
• essentially FIFO
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UNIX Pipes

• Examples
– ls | pr | lpr

• pipe ls into the standard input of pr
• pr pipes its standard output to lpr
• pr in this case is called a filter

– ls > filea
– pr < filea > fileb   

• read input from filea and output to fileb
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Signals

• Signals are a facility for handling 
exceptional conditions similar to
software interrupts

• Generated by keyboard interrupt, error in 
a process, asynchronous events
– timer
– job control

• Kill command can generate almost any 
signal
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Linux Kernel Concurrency 
Mechanisms

• Includes all the mechanisms found in 
UNIX

• Atomic operations execute without 
interruption and without interference
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Linux Atomic Operations
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Linux Atomic Operations
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Memory Barrier

• A class of instructions 
• Enforces that CPU executes memory 

operations in order

• Why would one need to enforce in-order 
execution?
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Memory Barrier Operations

• Consider the following 2 processes
Proc #1: 

loop:  load the value of location y, 
if it is 0 goto loop 

print the value in location x
Proc #2: 

store the value 55 into location x 
store the value 1 into location y

• What is the output?
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Linux Kernel Concurrency 
Mechanisms
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Solaris Thread 
Synchronization Primitives

• Mutual exclusion (mutex) locks
• Semaphores
• Multiple readers, single writer 

(readers/writer) locks
• Condition variables



(a) MUTEX lock

(b) Semaphore

(c) Reader/writer lock

(d) Condition variable

owner (3 octets)

lock (1 octet)

Type (1 octet)
wlock (1 octet)

waiters (2 octets)

Type (1 octet)
wlock (1 octet)

waiters (2 octets)

 waiters (2 octets)

thread owner (4 octets)

union (4 octets)
(statistic pointer or

number of write requests)

count (4 octets)

waiters (2 octets)

type specific info (4 octets)
(possibly a turnstile id,

lock type filler,
or statistics pointer)

Figure 6.15   Solaris Synchronization Data Structures
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