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Concurrency



Concurrency - Definition
“The fact of two or more events happening at the same time” 

CS Implications:

• In a single processor system, can two processes truly execute concurrently?


• Appearance of concurrency, but in actuality only one process can execute


• Scheduler determines which process is executing


• Two “concurrent processes” may execute in arbitrary order, arbitrary 
interleaving.


• Result - never assume a particular order of execution of two concurrent 
processes
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Difficulties of Concurrency

• Sharing of global resources
• Operating system managing the 

allocation of resources optimally
• Difficult to locate programming errors
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A Simple Example
void echo()
{
chin = getchar();
chout = chin;
putchar(chout); 

}
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A Simple Example

void echo()
{

chin = getchar();
chout = chin;
putchar(chout); 

}

• Assume 
– single processor
– 2 processes execute echo
– global variables

• What are the possible outputs?
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A Simple Example

Process P1 Process P2
. .
chin = getchar(); .
. chin = getchar();
chout = chin; chout = chin;
putchar(chout); .
. putchar(chout);
. .

Now assume 2 processors
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Difficulties of Concurrency

• Sharing of global resources
• Operating system managing the 

allocation of resources optimally
• Difficult to locate programming errors
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When is Concurrency Important?

• Communication among processes
• Sharing resources
• Synchronization of multiple processes
• Allocation of processor time



6

Concurrency

• Multiple applications
– Multiprogramming

• Structured application
– Application can be a set of concurrent 

processes
• Operating-system structure

– Operating system is a set of processes or 
threads
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Process Interaction

• Processes unaware of each other
• Processes indirectly aware of each other
• Process directly aware of each other
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Competition Among 
Processes for Resources

• Mutual Exclusion
– Critical sections

• Only one program at a time is allowed in its 
critical section

• Example only one process at a time is allowed 
to send command to the printer

• Deadlock
• Starvation
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Requirements for Mutual 
Exclusion

• Only one process at a time is allowed in 
the critical section for a resource

• A process that halts in its non-critical 
section must do so without interfering 
with other processes

• No deadlock or starvation
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Requirements for Mutual 
Exclusion cont.

• A process must not be delayed access to 
a critical section when there is no other 
process using it

• No assumptions are made about relative 
process speeds or number of processes

• A process remains inside its critical 
section for a finite time only
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Mutual Exclusion:
Hardware Support

• Interrupt Disabling
– In general: A process runs until it invokes 

an operating system service or until it is 
interrupted

– Uni-processor: Disabling interrupts 
guarantees mutual exclusion 

• Processor is limited in its ability to interleave 
programs

– Multiprocessing
• disabling interrupts on one processor will 

not guarantee mutual exclusion
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Mutual Exclusion:
Hardware Support

• Special Machine Instructions
– Performed in a single instruction cycle
– Access to the memory location is blocked 

for any other instructions
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Mutual Exclusion:
Hardware Support

• Test and Set Instruction
boolean testset (int i) {

if (i == 0) {
i = 1;
return true;

}
else {

return false;
}

}
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Mutual Exclusion:
Hardware Support

• Exchange Instruction
void exchange(int register, 

int memory) {
int temp;
temp = memory;
memory = register;
register = temp;

}
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Mutual Exclusion
• parbegin: initiate all processes and resume program 

after all Pi�s have terminated
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Mutual Exclusion Machine 
Instructions

• Advantages
– Applicable to any number of processes on 

either a single processor or multiple 
processors sharing main memory

– It is simple and therefore easy to verify
– It can be used to support multiple critical 

sections
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Mutual Exclusion Machine 
Instructions

• Disadvantages
– Busy-waiting consumes processor time
– Starvation is possible when a process leaves a 

critical section and more than one process is 
waiting.  

– Deadlock
• If a low priority process has the critical section and a 

higher priority process needs it, the higher priority 
process will obtain the processor to wait for the critical 
section (which will not be returned).
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Software Solutions –
Bakery Algorithm

• Also called Lamport�s bakery algorithm
– after Leslie Lamport
– A New Solution of Dijkstra's Concurrent Programming Problem 

Communications of the ACM 17, 8   (August 1974), 453-455.

• This is a mutual exclusion algorithm to 
prevent concurrent threads from entering 
critical sections concurrently

• source: wikipedia
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Bakery Algorithm

• Analogy
– bakery with a numbering machine
– each customer receives unique number

• numbers increase by one as customers enter
– global counter displays number of customer 

being served currently
• all others wait in queue

– after baker is done serving customer the 
next number is displayed

– served customer leaves
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Bakery Algorithm
• threads and bakery analogy

– when thread wants to enter critical section it 
has to make sure it has the smallest number.

• however, with threads it may not be true that 
only one thread gets the same number

– e.g., if number operation is non-atomic
• if more that one thread has the smallest number 

then the thread with lowest id can enter
• use pair (number, ID)

– In this context (a,b) < (c,d)  is equivalent to
– (a<c) or ((a==c) and (b<d))
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Bakery Algorithm
from wikipedia
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Peterson�s Algorithm 1981

• solves critical section problem
• based on shared memory for 

communication



 
boolean flag [2]; 
int turn; 
void P0() 
{ 
 while (true) { 
  flag [0] = true; 
  turn = 1; 
  while (flag [1] && turn == 1) /* do nothing */; 
  /* critical section   */; 
  flag [0] = false; 
  /* remainder   */; 
 } 
} 
void P1() 
{ 
 while (true) { 
  flag [1] = true; 
  turn = 0; 
  while (flag [0] && turn == 0) /* do nothing */; 
  /* critical section   */; 
  flag [1] = false; 
  /* remainder   */ 
 } 
} 
void main() 
{  
 flag [0] = false; 
 flag [1] = false; 
 parbegin (P0, P1); 
} 

 
Figure 5.3   Peterson's Algorithm for Two Processes 
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Semaphores

• Special variable called a semaphore is 
used for signaling

• If a process is waiting for a signal, it is 
suspended until that signal is sent



8

Semaphores

• Semaphore is a variable that has an 
integer value
– May be initialized to a nonnegative number
– Wait operation decrements the semaphore 

value
– Signal operation increments semaphore 

value



struct semaphore { 
 int count; 
 queueType queue; 
}; 
void semWait(semaphore s)  
{ 
 s.count--; 
 if (s.count < 0) { 
  /* place this process in s.queue */; 
  /* block this process */; 
 }  
} 
void semSignal(semaphore s) 
{ 
 s.count++; 
 if (s.count <= 0) { 
  /* remove a process P from s.queue */; 
  /* place process P on ready list */; 
 } 
} 

 
Figure 5.6  A Definition of Semaphore Primitives 



 
struct binary_semaphore { 
 enum {zero, one} value; 
 queueType queue; 
}; 
void semWaitB(binary_semaphore s) 
{ 
 if (s.value == one)  
  s.value = zero; 
 else { 
   /* place this process in s.queue */; 
   /* block this process */; 
 } 
} 
void semSignalB(semaphore s) 
{ 
 if (s.queue is empty()) 
  s.value = one; 
 else { 
   /* remove a process P from s.queue */; 
   /* place process P on ready list */; 
 } 
} 

 
Figure 5.7  A Definition of Binary Semaphore Primitives 
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Assume process A,B 
and C depend on result 
of process D

Initially one result of D 
is available (s = 1)



 
/* program mutualexclusion */ 
const int n = /* number of processes  */; 
semaphore s = 1; 
void P(int i) 
{  
 while (true) { 
  semWait(s); 
  /* critical section   */; 
  semSignal(s); 
  /* remainder   */; 
 } 
} 
void main() 
{ 
 parbegin (P(1), P(2), . . ., P(n)); 
} 

 
Figure 5.9  Mutual Exclusion Using Semaphores 
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Assume 3 
processes, 
A, B and C
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Producer/Consumer Problem

• One or more producers are generating 
data and placing these in a buffer

• A single consumer is taking items out of 
the buffer one at time

• Only one producer or consumer may 
access the buffer at any one time
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Producer

producer:
while (true) {
/* produce item v */
b[in] = v;
in++; 

}



3

Consumer

consumer:
while (true) {
while (in <= out) 

/*do  nothing */;
w = b[out];
out++; 
/* consume item w */

}



b[1] b[2]

out

b[3] b[4] b[5]

0 1 2 3 4

in

Figure 5.11  Infinite Buffer for the Producer/Consumer Problem

Note: shaded area indicates portion of buffer that is occupied
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Producer with Circular Buffer
producer:
while (true) {
/* produce item v */
while ((in + 1) % n == out) 

/* do nothing */;
b[in] = v;
in = (in + 1) % n

}
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Consumer with Circular 
Buffer

consumer:
while (true) {
while (in == out)

/* do nothing */;
w = b[out];
out = (out + 1) % n;
/* consume item w */

}



b[1] b[2]

out

(a)

b[3] b[4] b[5] b[n]

in

b[1] b[2]

out

(b)

b[3] b[4]

in

Figure 5.15  Finite Circular Buffer for the Producer/Consumer Problem

b[5]   b[n]



 
 /* program producerconsumer */ 
 int n; 
 binary_semaphore s = 1, delay = 0;  
 void producer() 
 { 
  while (true) { 
   produce(); 
   semWaitB(s); 
   append(); 
   n++; 
   if (n==1) semSignalB(delay);  
   semSignalB(s); 
  } 
 } 
 void consumer() 
 { 
  semWaitB(delay); 
  while (true) { 
   semWaitB(s); 
   take(); 
   n--; 
   semSignalB(s); 
   consume(); 
   if (n==0) semWaitB(delay);  
  } 
 } 
 void main() 
 { 
  n = 0; 
  parbegin (producer, consumer); 
 } 

 
Figure 5.12  An Incorrect Solution to the Infinite-Buffer Producer/Consumer 

Problem Using Binary Semaphores 



 
 /* program producerconsumer */ 
 int n; 
 binary_semaphore s = 1, delay = 0;  
 void producer() 
 { 
  while (true) { 
   produce(); 
   semWaitB(s); 
   append(); 
   n++; 
   if (n==1) semSignalB(delay); 
   semSignalB(s); 
  } 
 } 
 void consumer()  
 { 
  int m; /* a local variable */ 
  semWaitB(delay); 
  while (true)  { 
   semWaitB(s); 
   take(); 
   n--; 
   m = n; 
   semSignalB(s); 
   consume(); 
   if (m==0) semWaitB(delay); 
  } 
 } 
 void main() 
 { 
  n = 0; 
  parbegin (producer, consumer); 
 } 

 
Figure 5.13    A Correct Solution to the Infinite-Buffer Producer/Consumer 

Problem Using Binary Semaphores 



 
 /* program  producerconsumer */ 
 semaphore n = 0, s = 1;  
 void producer() 
 { 
  while (true) { 
   produce(); 
   semWait(s); 
   append(); 
   semSignal(s); 
   semSignal(n); 
  } 
 } 
 void consumer() 
 { 
  while (true) {  
   semWait(n); 
   semWait(s); 
   take(); 
   semSignal(s); 
   consume(); 
  } 
 } 
 void main() 
 { 
  parbegin (producer, consumer); 
 } 

  
Figure 5.14   A Solution to the Infinite-Buffer Producer/Consumer Problem 

Using Semaphores 



 
 /* program boundedbuffer */ 
 const int sizeofbuffer = /* buffer size */; 
 semaphore s = 1, n= 0, e= sizeofbuffer;  
 void producer() 
 { 
  while (true) { 
   produce(); 
   semWait(e); 
   semWait(s); 
   append(); 
   semSignal(s); 
   semSignal(n); 
  } 
 } 
 void consumer() 
 { 
  while (true) { 
   semWait(n); 
   semWait(s); 
   take(); 
   semSignal(s); 
   semSignal(e); 
   consume(); 
  } 
 } 
 void main() 
 { 
  parbegin (producer, consumer); 
 } 

 
Figure 5.16    A Solution to the Bounded-Buffer Producer/Consumer 

Problem Using Semaphores 



 

 
semWait(s) 
{  
 while (compare_and_swap(s.flag, 0 , 1) == 1)  
  /* do nothing */; 
 s.count--; 
 if (s.count < 0) { 
  /* place this process in s.queue*/; 
  /* block this process (must also set s.flag to 0) 
*/; 
 } 
 s.flag = 0; 
} 
 
semSignal(s) 
{ 
 while (compare_and_swap(s.flag, 0 , 1) == 1) 
      /* do nothing */; 
 s.count++; 
 if (s.count <= 0) { 
  /* remove a process P from s.queue */; 
  /* place process P on ready list */; 
 }  
 s.flag = 0; 
} 

semWait(s) 
{  
 inhibit interrupts; 
 s.count--; 
 if (s.count < 0) { 
   /* place this process in s.queue */; 
   /* block this process and allow interrupts */; 
 } 
 else  
  allow interrupts; 
} 
 
semSignal(s) 
{ 
 inhibit interrupts; 
 s.count++; 
 if (s.count <= 0) { 
   /* remove a process P from s.queue */; 
   /* place process P on ready list */; 
 } 
 allow interrupts; 
} 

 
  (a) Compare and Swap Instruction (b) Interrupts 

 
Figure 5.17   Two Possible Implementations of Semaphores 
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Using Semaphores

• It is difficult to use semaphores
– see example in Fig 5.12
– semaphores may be scattered throughout 

the program
• difficult to assess overall effect

• Monitors provide similar functionality 
– but are easier to control
– implemented in languages like Concurrent 

Pascal, Pascal-Plus, Modula-2 & 3, and 
Java
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Monitors

• A Monitor is a software module
• Chief characteristics

– Local data variables are accessible only by 
the monitor

– Process enters monitor by invoking one of 
its procedures

– Only one process may be executing in the 
monitor at a time
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Monitors

• Provides mutual exclusion facility
• Shared data structure can be protected by 

placing it into a monitor
• If the data in a monitor represents some 

resource, then mutual exclusion is 
guaranteed for that resource
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Monitors

• Synchronization support is needed
– implemented using special data types called 

condition variables
– these variables are affected by two 

functions
• cwait(c)

– suspend calling process on condition c
– now monitor can be used by other process

• csignal(c)
– resume blocked process after cwait on same 

condition c
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Monitors

• So what is the difference between the 
use of cwait and csignal in monitors and 
the wait and signal of semaphores?
– Hint: remember what got us in trouble when 

using semaphores
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Monitors

• Monitor wait and signal operations are 
different from their counterparts in 
semaphores
– If a process in a monitor signals and 

corresponding queue is empty then signal is 
lost



Entrance

queue of

entering

processes

Exit

condition c1

cwait(c1)

urgent queue

csignal

condition cn

cwait(cn)

local data

condition variables

Procedure 1

Procedure k

initialization code

Figure 5.18  Structure of a Monitor

monitor waiting area

MONITOR



 
/* program producerconsumer */ 
monitor boundedbuffer; 
char buffer [N]; 

 
/* space for N items */ 

int nextin, nextout; 
/* buffer pointers */ 

int count; 
 

 
/* number of items in buffer */ 

cond notfull, notempty; 
/* condition variables for synchronization */ 

 void append (char x) 
{  

if (count == N) cwait(notfull);  
/* buffer is full; avoid overflow */ 

 
buffer[nextin] = x; 

 
nextin = (nextin + 1) % N; 

 
count++; 

 
 

/* one more item in buffer */ 
 

csignal(notempty); 
/* resume any waiting consumer */ 

} void take (char x) 
{ 

 
 

if (count == 0) cwait(notempty); 
/* buffer is empty; avoid underflow */ 

 
x = buffer[nextout]; 

 
nextout = (nextout + 1) % N; 

 
count--; 

 
/* one fewer item in buffer */ 

 
csignal(notfull); 

/* resume any waiting producer */ 
} 

 
{ 

 
 

 
 

/* monitor body */ 
 

nextin = 0; nextout = 0; count = 0; 
/* buffer initially empty */ 

} 
 

void producer()  
{  

char x; 
 

while (true) { 
 

produce(x); 
 

append(x); 
 

} 
} void consumer() 
{  

char x; 
 

while (true) { 
 

 
take(x); 

 
 
consume(x); 

 
} 

} void main() 
{  

parbegin (producer, consumer); 
} 

  
Figure 5.19 A

 Solution to the Bounded-Buffer Producer/C
onsum

er Problem
 

U
sing a M

onitor 



 
void append (char x) 
{ 
 while(count == N) cwait(notfull); /* buffer is full; avoid overflow */ 
 buffer[nextin] = x; 
 nextin = (nextin + 1) % N; 
 count++; /* one more item in buffer */ 
 cnotify(notempty); /* notify any waiting consumer */ 
} 
 
void take (char x) 
{ 
 while(count == 0) cwait(notempty); /* buffer is empty; avoid underflow */ 
 x = buffer[nextout]; 
 nextout = (nextout + 1) % N; 
 count--;   /* one fewer item in buffer */ 
 cnotify(notfull);  /* notify any waiting producer */ 
} 

 
Figure 5.20  Bounded Buffer Monitor Code for Mesa Monitor 
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Message Passing

• Interaction between processes
– synchronization
– communication

• One solution to this is message passing
– works in both tightly and loosely coupled 

systems
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Message Passing

• Enforce mutual exclusion
• Exchange information

send (destination, message)
receive (source, message)
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Synchronization

• Sender and receiver may or may not be 
blocking (waiting for message)

• Blocking send, blocking receive
– Both sender and receiver are blocked until 

message is delivered
– This is called a rendezvous
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Synchronization

• Nonblocking send, blocking receive
– Sender continues on
– Receiver is blocked until the requested 

message arrives

• Nonblocking send, nonblocking receive
– Neither party is required to wait
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Addressing

• Direct addressing
– Send primitive includes a specific identifier

of the destination process
– Receive primitive could know ahead of time 

which process a message is expecting
– Receive primitive could use source 

parameter to return a value when the 
receive operation has been performed
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Addressing

• Indirect addressing
– Messages are sent to a shared data structure 

consisting of queues
– Queues are called mailboxes
– One process sends a message to the mailbox 

and the other process picks up the message 
from the mailbox

– relationship between sender & receiver
• 1-to-1, many-to-1, 1-to-many, many-to-many



S1

Sn

R1

Rm

Mailbox

S1

Sn

R1Port 

Figure 5.21   Indirect Process Communication

(b) Many to one

S1 R1Mailbox

S1

(a) One to one

(d) Many to many

R1

Rm

Mailbox

(c) One to many



Message Type

Destination ID

Source IDHeader

Body

Figure 5.22   General Message Format

Message Length

Control Information

Message Contents



 
/* program mutualexclusion */ 
const int n = /* number of processes  */; 
void P(int i) 
{ 
 message msg; 
 while (true) { 
  receive (box, msg); 
  /* critical section   */; 
  send (box, msg); 
  /* remainder   */; 
 } 
} 
void main() 
{  
 create_mailbox (box); 
 send (box, null); 
 parbegin (P(1), P(2), . . ., P(n)); 
} 

 
Figure 5.23  Mutual Exclusion Using Messages 

Assumptions: non-blocking send, blocking receive



 
const int  
 capacity = /* buffering capacity */ ; 
 null = /* empty message */ ; 
int i; 
void producer()  
{ message pmsg; 
 while (true) {  
  receive (mayproduce, pmsg); 
  pmsg = produce(); 
  send (mayconsume, pmsg); 
 }  
} 
void consumer() 
{ message cmsg; 
 while (true) { 
  receive (mayconsume, cmsg); 
  consume (cmsg); 
  send (mayproduce, null); 
 } 
} 
 
void main() 
{ 
 create_mailbox (mayproduce); 
 create_mailbox (mayconsume); 
 for (int i = 1; i <= capacity; i++) send (mayproduce, null);  
 parbegin (producer, consumer); 
}  

 
Figure 5.24   A Solution to the Bounded-Buffer Producer/Consumer Problem 

Using Messages 
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Readers/Writers Problem

• Different variations on the theme, e.g.,
– dedicated readers and dedicated writers
– they all can read and write

• Here we look at the �dedicated� case
– Any number of readers may simultaneously 

read the file
– Only one writer at a time may write to the file
– If a writer is writing to the file, no reader may 

read it



 
/* program readersandwriters */ 
int readcount; 
semaphore x = 1, wsem = 1; 
void reader() 
{ 
 while (true) { 
  semWait (x); 
  readcount++; 
  if (readcount == 1) semWait (wsem); 
  semSignal (x); 
  READUNIT(); 
  semWait (x); 
  readcount--; 
  if (readcount == 0) semSignal (wsem); 
  semSignal (x); 
 } 
 } 
void writer() 
{ 
 while (true) { 
  semWait (wsem); 
  WRITEUNIT(); 
  semSignal (wsem); 
 } 
} 
 
void main() 
{ 
 readcount = 0; 
 parbegin (reader, writer); 
} 

 
Figure 5.25    A Solution to the Readers/Writers Problem Using 

Semaphores: Readers Have Priority 



 
/* program readersandwriters */ 
int  readcount, writecount; 
semaphore x = 1, y = 1, z = 1, wsem = 1, rsem = 1; 
void reader() 
{  

while (true) { 
 

 
semWait (z); 

 
 
 

semWait (rsem); 
 

 
 

 
semWait (x); 

 
 
 

 
 

readcount++; 
 

 
 

 
 

if (readcount == 1) semWait (wsem); 
 

 
 

 
semSignal (x); 

 
 
 

semSignal (rsem); 
 

 
semSignal (z); 

 
 
READUNIT(); 

 
 
semWait (x); 

 
 
 

readcount--; 
 

 
 

if (readcount == 0) semSignal (wsem);  
 

 
semSignal (x); 

 
} 

} void writer () 
{  

while (true) { 
 

 
semWait (y); 

 
 
 

writecount++; 
 

 
 

if (writecount == 1) semWait (rsem); 
 

 
semSignal (y); 

 
 
semWait (wsem); 

 
 
WRITEUNIT(); 

 
 
semSignal (wsem); 

 
 
semWait (y); 

 
 
 

writecount--; 
 

 
 

if (writecount == 0) semSignal (rsem);  
 

 
semSignal (y); 

 
} 

} void main() 
{  

readcount = writecount = 0; 
 

parbegin (reader, writer); 
} 

 
Figure 5.26   A

 Solution to the R
eaders/W

riters Problem
 U

sing 
Sem

aphores: W
riters H

ave Priority 



 

 
 
void reader(int i) 
{ 
 message rmsg; 
  while (true) { 
   rmsg = i; 
   send (readrequest, rmsg); 
   receive (mbox[i], rmsg); 
   READUNIT (); 
   rmsg = i; 
   send (finished, rmsg); 
  } 
 } 
void writer(int j) 
{  
 message rmsg; 
 while(true) { 
  rmsg = j; 
  send (writerequest, rmsg); 
  receive (mbox[j], rmsg); 
  WRITEUNIT (); 
  rmsg = j; 
  send (finished, rmsg); 
 }  
} 

 

void  controller() 
{  
  while (true) 
  {   
   if (count > 0) { 
    if (!empty (finished)) { 
     receive (finished, msg); 
     count++; 
    } 
    else if (!empty (writerequest)) { 
     receive (writerequest, msg); 
     writer_id = msg.id; 
     count = count – 100; 
    } 
    else if (!empty (readrequest)) { 
     receive (readrequest, msg); 
     count--; 
     send (msg.id, "OK"); 
    }  
   } 
   if (count == 0) {  
    send (writer_id, "OK"); 
    receive (finished, msg); 
    count = 100; 
   } 
   while (count < 0) { 
    receive (finished, msg); 
    count++; 
   } 
  } 
} 

 
Figure 5.27   A Solution to the Readers/Writers Problem Using Message Passing 



 

 
char  rs, sp; 
char inbuf[80], outbuf[125] ; 
void read() 
{ 
 while (true) { 
  READCARD (inbuf); 
  for (int i=0; i < 80; i++){ 
    rs = inbuf [i]; 
    RESUME squash 
  }  
  rs = " "; 
  RESUME squash; 
 } 
} 
void print() 
{ 
 while (true) { 
  for (int j = 0; j < 125; j++){ 
    outbuf [j] = sp; 
    RESUME squash 
  }  
  OUTPUT (outbuf); 
 } 
} 

void squash() 
{ 
 while (true) { 
  if (rs != "*") { 
    sp = rs; 
    RESUME print; 
  }  
  else{ 
   RESUME read; 
   if (rs == "*") { 
     sp = "↑"; 
     RESUME print; 
   }  
   else { 
    sp = "*"; 
    RESUME print; 
    sp = rs; 
    RESUME print; 
   }  
  }  
  RESUME read; 
 } 
} 

 
 

Figure 5.28   An Application of Coroutines 


