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Process

• Two characteristics:
– Resource ownership

• process includes a virtual address space to hold 
the process image

– Scheduling/execution
• follows an execution path that may be 

interleaved with other processes
– These two characteristics are treated 

independently by the OS
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Process

• process
– sometimes referred to as task or job
– refers to resource of ownership
– (addresses the 1st characteristic)

• thread or lightweight process
– this is the unit of dispatching 
– (addresses the 2nd characteristic)
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Multithreading

• Operating system supports multiple threads of 
execution within a single process
– MS-DOS supports a single thread
– UNIX supports multiple user processes but only 

supports one thread per process
– Windows, Solaris, Linux, Mach, OS X, and OS/2 

support multiple threads
• e.g. OS X 10.6 (snow leopard) offers POSIX threads 

(or pthreads, POSIX 1003.1c standard), and Cocoa 
threads



Figure 4.1   Threads and Processes
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Process

• In multithreaded environment a process
is the unit of resource allocation and a 
unit of protection

• Processes
– Have a virtual address space which holds 

the process image
– Protected access to processors, other 

processes, files, and I/O resources
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Thread

• Within a process there are one or more 
threads, each with the following:
– an execution state (running, ready, etc.)
– a saved thread context when not running

• may view a thread as an independent program 
counter operating within a process

– an execution stack
– some per-thread static storage for local variables
– access to the memory & resources of its process

• all threads of a process share this
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Benefits of Threads
• Takes less time to create a new thread than a 

process
• Less time to terminate a thread than a process
• Less time to switch between two threads 

within the same process
• Since threads within the same process share 

memory and files, they can communicate with 
each other without invoking the kernel
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Threads in a Single-User 
Multiprocessing System

• Foreground to background work
– e.g. spreadsheet, multiple threads display 

menues, read user input, update spreadsheet 
etc.

• Asynchronous processing
– e.g. thead in word processor to periodically 

flush RAM to disk
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Threads in a Single-User 
Multiprocessing System

• Speed of execution
– e.g. a process may compute one batch of 

data while reading in the next.
– in multiprocessor: true parallel execution of 

threads in a process
• Modular program structure

– thread model can be used to �group�
activities of process
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Threads

• Suspending a process 
– suspends all threads of the process since all 

threads share the same address space
• Termination of a process

– terminates all threads within the process
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Thread States

• States of a thread
– Spawn

• when process is spawned
• thread may spawn other threads
• each thread has its own: 

– register context, state space, and place in ready queue

– Block
• when thread waits for event

– saves user registers, PC and stack pointer
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Thread States

• States of a thread
– Unblock

• when blocking event occurs
• thread is moved to ready queue

– Finish
• register context and stack is deallocated
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Remote Procedure Call Using 
Single Thread

What is a RPC?
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Remote Procedure Call Using 
Threads
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Basic questions

• What is the difference between this and 
multiprocessing?
– kind of looks the same, or...?

• Is there a need to synchronize threads?
– e.g. two threads insert an element into a 

linked structure
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User-Level Threads (ULT)

• All thread management is done by the 
application
– e.g. using threads library

• The kernel is not aware of the existence 
of threads
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User-Level Threads
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Kernel-Level Threads (KLT)

• Often called lightweight processes
• Windows is an example of this approach
• Kernel maintains context information for 

the process and the threads
• Scheduling is done on a thread basis
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Kernel-Level Threads



14

Combined Approaches

• Thread creation is done in user space
• Bulk of scheduling and synchronization 

of threads done within application

• Example is Solaris
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Combined Approaches
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Relationship Between Threads 
and Processes
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Advantages of ULT over KLT

• thread switching does not require kernel 
mode privileges
– saves two mode switches (user-to-kernel 

and kernel-to-user)
• application specific scheduling

– applications may prefer their own specific 
scheduling algorithm

• ULT can run on any OS
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Disadvant. of ULT vs KLT

• Many OS system calls are blocking.
– so if ULT executes such call all threads 

within its process are blocked
• In pure ULT strategy a multithreaded 

application cannot take advantage of 
multiprocessing
– no concurrency



Figure 4.7  Performance Effect of Multiple Cores
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Figure 4.8  Scaling of Database Workloads on Multiple-Processor Hardware
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Windows Processes

• Implemented as objects
• An executable process may contain one 

or more threads
• Both processes and thread objects have 

built-in synchronization capabilities



Process

object

Access

token

Virtual address descriptors

Thread x

File y

Section z

Handle1

Handle2

Handle3

Available

objects

Figure 4.10  A Windows Process and Its Resources

Handle Table



3

Windows Process Object
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Windows Thread Object
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Windows 2000
Thread States

• Ready
• Standby
• Running
• Waiting
• Transition
• Terminated

Windows 2000!@#$ …From the historical documents J



Figure 4.11   Windows Thread States
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Solaris

• Process includes the user�s address 
space, stack, and process control block

• User-level threads
• Lightweight processes (LWP)
• Kernel threads
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Figure 4.12   Processes and Threads in Solaris
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Solaris Lightweight Data 
Structure

• Identifier
• Priority
• Signal mask
• Saved values of user-level registers
• Kernel stack
• Resource usage and profiling data
• Pointer to the corresponding kernel thread
• Pointer to the process structure
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Linux Task Data Structure
• State
• Scheduling information

– normal or real-time, priorities
• Identifiers
• Interprocess communication
• Links
• Times and timers
• File system
• Address space
• Processor-specific context
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Linux States of a Process

• Running
• Interruptable
• Uninterruptable
• Stopped
• Zombie
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