
Chapter 4 Lectures
Stallings - 9ed

Sequence 8 CS 240 2

Process

• Two characteristics:
– Resource ownership

• process includes a virtual address space to hold
the process image

– Scheduling/execution
• follows an execution path that may be

interleaved with other processes
– These two characteristics are treated

independently by the OS

Sequence 8 CS 240 3

Process

• process
– sometimes referred to as task or job
– refers to resource of ownership
– (addresses the 1st characteristic)

• thread or lightweight process
– this is the unit of dispatching
– (addresses the 2nd characteristic)

Sequence 8 CS 240 4

Multithreading

• Operating system supports multiple threads of
execution within a single process
– MS-DOS supports a single thread
– UNIX supports multiple user processes but only

supports one thread per process
– Windows, Solaris, Linux, Mach, OS X, and OS/2

support multiple threads
• e.g. OS X 10.6 (snow leopard) offers POSIX threads

(or pthreads, POSIX 1003.1c standard), and Cocoa
threads

Figure 4.1 Threads and Processes

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

Sequence 8 CS 240 6

Process

• In multithreaded environment a process
is the unit of resource allocation and a
unit of protection

• Processes
– Have a virtual address space which holds

the process image
– Protected access to processors, other

processes, files, and I/O resources

Sequence 8 CS 240 7

Thread

• Within a process there are one or more
threads, each with the following:
– an execution state (running, ready, etc.)
– a saved thread context when not running

• may view a thread as an independent program
counter operating within a process

– an execution stack
– some per-thread static storage for local variables
– access to the memory & resources of its process

• all threads of a process share this

Single-Threaded
Process Model

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

Multithreaded
Process Model

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

Thread
Control
Block

Thread Thread Thread

Figure 4.2 Single Threaded and Multithreaded Process Models

Thread
Control
Block

Thread
Control
Block

Sequence 8 CS 240 9

Benefits of Threads
• Takes less time to create a new thread than a

process
• Less time to terminate a thread than a process
• Less time to switch between two threads

within the same process
• Since threads within the same process share

memory and files, they can communicate with
each other without invoking the kernel

Sequence 8 CS 240 10

Threads in a Single-User
Multiprocessing System

• Foreground to background work
– e.g. spreadsheet, multiple threads display

menues, read user input, update spreadsheet
etc.

• Asynchronous processing
– e.g. thead in word processor to periodically

flush RAM to disk

Sequence 8 CS 240 11

Threads in a Single-User
Multiprocessing System

• Speed of execution
– e.g. a process may compute one batch of

data while reading in the next.
– in multiprocessor: true parallel execution of

threads in a process
• Modular program structure

– thread model can be used to �group�
activities of process

1

Threads

• Suspending a process
– suspends all threads of the process since all

threads share the same address space
• Termination of a process

– terminates all threads within the process

2

Thread States

• States of a thread
– Spawn

• when process is spawned
• thread may spawn other threads
• each thread has its own:

– register context, state space, and place in ready queue

– Block
• when thread waits for event

– saves user registers, PC and stack pointer

3

Thread States

• States of a thread
– Unblock

• when blocking event occurs
• thread is moved to ready queue

– Finish
• register context and stack is deallocated

4

Remote Procedure Call Using
Single Thread

What is a RPC?

5

Remote Procedure Call Using
Threads

Time

Blocked

I/O

request

Thread A (Process 1)

Thread B (Process 1)

Thread C (Process 2)

Figure 4.4 Multithreading Example on a Uniprocessor

Ready Running

Request

complete

Time quantum

expires

Time quantum

expires

Process

created

7

Basic questions

• What is the difference between this and
multiprocessing?
– kind of looks the same, or...?

• Is there a need to synchronize threads?
– e.g. two threads insert an element into a

linked structure

8

User-Level Threads (ULT)

• All thread management is done by the
application
– e.g. using threads library

• The kernel is not aware of the existence
of threads

9

User-Level Threads

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(a)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(b)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready

Figure 4.6 Examples of the Relationships Between User-Level Thread States and Process States

Running

Colored state
is current state

Blocked

Process B

(c)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(d)

11

Kernel-Level Threads (KLT)

• Often called lightweight processes
• Windows is an example of this approach
• Kernel maintains context information for

the process and the threads
• Scheduling is done on a thread basis

12

Kernel-Level Threads

14

Combined Approaches

• Thread creation is done in user space
• Bulk of scheduling and synchronization

of threads done within application

• Example is Solaris

15

Combined Approaches

16

Relationship Between Threads
and Processes

17

Advantages of ULT over KLT

• thread switching does not require kernel
mode privileges
– saves two mode switches (user-to-kernel

and kernel-to-user)
• application specific scheduling

– applications may prefer their own specific
scheduling algorithm

• ULT can run on any OS

18

Disadvant. of ULT vs KLT

• Many OS system calls are blocking.
– so if ULT executes such call all threads

within its process are blocked
• In pure ULT strategy a multithreaded

application cannot take advantage of
multiprocessing
– no concurrency

Figure 4.7 Performance Effect of Multiple Cores

re
la

tiv
e

sp
ee

du
p

re
la

tiv
e

sp
ee

du
p

0

2

4

6

8

21

number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

10%
5%

15%
20%

7 8

0

0.5

1.0

1.5

2.0

2.5

21

number of processors

(b) Speedup with overheads

3 4 5 6 7 8

Figure 4.8 Scaling of Database Workloads on Multiple-Processor Hardware

0
0

16

32

48

64

16 32
number of CPUs

sc
al

in
g

48 64

perf
ect

 sc
ali

ng

Oracle DSS 4-way join
TMC data mining
DB2 DSS scan & aggs
Oracle ad hoc insurance OLTP

Render

Skybox Main View

Scene List

For each object

Particles

Sim and Draw

Bone Setup

Draw

Character

Etc.

Monitor Etc.

Figure 4.9 Hybrid Threading for Rendering Module

1

Windows Processes

• Implemented as objects
• An executable process may contain one

or more threads
• Both processes and thread objects have

built-in synchronization capabilities

Process

object

Access

token

Virtual address descriptors

Thread x

File y

Section z

Handle1

Handle2

Handle3

Available

objects

Figure 4.10 A Windows Process and Its Resources

Handle Table

3

Windows Process Object

4

Windows Thread Object

5

Windows 2000
Thread States

• Ready
• Standby
• Running
• Waiting
• Transition
• Terminated

Windows 2000!@#$ …From the historical documents J

Figure 4.11 Windows Thread States

Transition

Ready

Waiting

Runnable

Not Runnable

StandbyPick to
Run Switch

Preempted

Block/
Suspend

Unblock/Resume
Resource Available

Resource
Available

Unblock
Resource Not Available

Terminate

Terminated

Running

7

Solaris

• Process includes the user�s address
space, stack, and process control block

• User-level threads
• Lightweight processes (LWP)
• Kernel threads

Hardware

Figure 4.12 Processes and Threads in Solaris

Kernel

System calls

syscall()syscall()

Process

Kernel

thread

Kernel

thread

Lightweight

process (LWP)

Lightweight

process (LWP)

user

thread

user

thread

8

Process ID

UNIX Process Structure

User IDs

Signal Dispatch Table

File Descriptors

Memory Map

Priority
Signal Mask

Registers
STACK

Priority
LWP ID

Signal Mask
Registers
STACK

Processor State

Process ID

Solaris Process Structure

User IDs

Signal Dispatch Table

File Descriptors

LWP 1

Priority
LWP ID

Signal Mask
Registers
STACK

LWP 2

Memory Map

Figure 4.13 Process Structure in Traditional UNIX and Solaris [LEWI96]

10

Solaris Lightweight Data
Structure

• Identifier
• Priority
• Signal mask
• Saved values of user-level registers
• Kernel stack
• Resource usage and profiling data
• Pointer to the corresponding kernel thread
• Pointer to the process structure

IDLE

thread_create() intr()

swtch()
syscall()

wakeup()

prun() pstop() exit() reap()

preempt()

RUN

PINNED

ONPROC SLEEP

STOP ZOMBIE FREE

Figure 4.14 Solaris Thread States

12

Linux Task Data Structure
• State
• Scheduling information

– normal or real-time, priorities
• Identifiers
• Interprocess communication
• Links
• Times and timers
• File system
• Address space
• Processor-specific context

13

Linux States of a Process

• Running
• Interruptable
• Uninterruptable
• Stopped
• Zombie

Stopped

Ready

Running
State

Uninterruptible

Interruptible

Executing Zombie

Figure 4.15 Linux Process/Thread Model

creation
scheduling

termination

signalsignal

event
signal

or
event

