Chapter 3 Slides

Stallings - 9th ed

Sequence 5

Requirements of an
Operating System

Interleave the execution of multiple
processes to maximize processor
utilization while providing reasonable
response time

Allocate resources to processes

Support interprocess communication and
user creation of processes

CS240 2

Sequence 5

Manage Execution of
Applications

Resources made available to multiple
applications

Processor 1s switched among multiple
application

The processor and I/O devices can be
used efficiently

CS240

Process

A program in execution

An instance of a program running on a
computer

The entity that can be assigned to and
executed on a processor

A unit of activity characterized by the
execution of a sequence of 1nstructions,
a current state, and an associated set of
system 1nstructions

Sequence 5 CS240 4

Sequence 5

Process Elements

Identifier

State

Priority

Program counter
Memory pointers
Context data

I/O status information
Accounting information

CS240

Sequence 5

Process Control Block

Contains the process elements

Created and manage by the operating
system

Allows support for multiple processes

CS240

Identifier

State

Priority

Program counter

Memory pointers

Context data

I/0 status
information

Accounting
information

Figure 3.1 Simplified Process Control Block

Address Main Memory

0
100

5000

8000

12000

Dispatcher

Process A

Process B

Program Counter

8000

b

Process C

A

Figure 3.2 Snapshot of Example Execution (Figure 3.4)
at Instruction Cycle 13

5000 8000 12000
5001 8001 12001
5002 8002 12002
5003 8003 12003
5004 12004
5005 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011

(a) Trace of Process A (b) Trace of Process B (c¢) Trace of Process C
5000 = Starting address of program of Process A

8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.3 Traces of Processes of Figure 3.2

1 5000 27 12004
2 5001 28 12005
3 5002 Timeout
4 5003 29 100

5 5004 30 101

6 5005 31 102
-------------------- Timeout 32 103

7 100 33 104

8 101 34 105

9 102 35 5006
10 103 36 5007
11 104 37 5008
12 105 38 5009
13 8000 39 5010
14 8001 40 5011
15 8002 Timeout
16 8003 41 100
--------------- 1/0 Request 42 101
17 100 43 102
18 101 44 103
19 102 45 104
20 103 46 105
21 104 47 12006
22 105 48 12007
23 12000 49 12008
24 12001 50 12009
25 12002 51 12010
26 12003 52 12011

———————————————————— Timeout

100 = Starting address of dispatcher program

Shaded areas indicate execution of dispatcher process;
first and third columns count instruction cycles;
second and fourth columns show address of instruction being executed

Figure 3.4 Combined Trace of Processes of Figure 3.2

Sequence 5

Two-State Process Model

Process may be in one of two states

Running
Not-running

Dispatch

T~

Enter Not) Exit
Running Running ————»

\/

Pause

(a) State transition diagram

CS240 12

Not-Running Process in a
Queue

Sequence 5 CS240 13

Sequence 5

Processes

Not-running
ready to execute

Blocked
waiting for I/O

Dispatcher cannot just select the process
that has been 1n the queue the longest
because it may be blocked

CS240 17

Sequence 5

A Five-State Model

Running
Ready
Blocked
New
Exit

CS240

18

Dispatch
Admit —_— Release
(New —P(Ready Running —_— Exit

A Timeout

Event
Occurs

(Blocked

Event
Wait

Figure 3.6 Five-State Process Model

Process Creation

Table 3.1 Reasons for Process Creation

New batch job

Interactive logon

Created by OS to provide a service

Spawned by existing process

The operating system is provided with a batch job control
stream, usually on tape or disk. When the operating system
1s prepared to take on new work, it will read the next
sequence of job control commands.

A user at a terminal logs on to the system.
The operating system can create a process to perform a
function on behalf of a user program, without the user

having to wait (e.g., a process to control printing).

For purposes of modularity or to exploit parallelism, a user
program can dictate the creation of a number of processes.

Sequence 5

CS240 14

Process Termination

Table 3.2 Reasons for Process Termination

Normal completion The process executes an OS service call to indicate that it has
completed running.
Time limit exceeded The process has run longer than the specified total time limit.

There are a number of possibilities for the type of time that is
measured. These include total elapsed time ("wall clock time"),
amount of time spent executing, and, in the case of an interactive
process, the amount of time since the user last provided any input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed
to access.

Protection error The process attempts to use a resource such as a file that it is not

allowed to use, or it tries to use it in an improper fashion, such as
writing to a read-only file.

Arithmetic error The process tries a prohibited computation, such as division by
zero, or tries to store numbers larger than the hardware can
accommodate.

Process Termination

Table 3.2 Reasons for Process Termination

Time overrun

T/O failure

Invalid instruction

Privileged instruction

Data misuse

The process has waited longer than a specified maximum for a
certain event to occur.

An error occurs during input or output, such as inability to find a

file, failure to read or write after a specified maximum number of

tries (when, for example, a defective area is encountered on a
tape). or invalid operation (such as reading from the line printer).

The process attempts to execute a nonexistent instruction (often a

result of branching into a data area and attempting to execute the
data).

The process attempts to use an instruction reserved for the
operating system.

A piece of data is of the wrong type or is not initialized.

Operator or OS intervention For some reason, the operator or the operating system has

Parent termination

Parent request

terminated the process (for example, if a deadlock exists).

When a parent terminates, the operating system may automatically

terminate all of the offspring of that parent.

A parent process typically has the authority to terminate any of its offspring.

16

Process A

Process C

Dispatcher

|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII IIII|IIII|II
0 5 10 15 20 25 30 35 40 45 50

= Running = Ready - = Blocked

Figure 3.7 Process States for Trace of Figure 3.4

Using Two Queues

Ready Queue Release
Admit Dispatch
Processor
Timeout
Blocked Queue .
Event - Event Wait
Occurs

(a) Single blocked queue

Is the Blocked Queue a FIFO queue?

What is the problem with the Blocked Queue?

Sequence 5 CS240

22

Multiple Blocked Queues

-

Ready Queue Release
Admit Dispatch
- | Processor
A
Timeout
_—
Event 1 Queue Event 1 Wait
ven ai

Event 1 - -
Occurs

Event 2 Queue)
Event 2 - Event 2 Wait
Occurs

Event n Queue
Event n Event n Wait
Occurs

Sequence 5

(b) Multiple blocked queues
CS240

23

Sequence 5

Suspended Processes

Processor is faster than I/0 so all
processes could be waiting for I/O

Swap these processes to disk to free up
more memory

Blocked state becomes suspend state
when swapped to disk

Two new states
Blocked/Suspend
Ready/Suspend

CS240 24

Dispatch

Rel
Ready ; ﬁ{unning ﬂP(Exit

Timeout

Event
Occurs

Suspend
euspend 4—(Blocked

(a) With One Suspend State

2
\\%.' S
JES R T
- - = ~ ~
. - ~ ~
A Activate \ Dispatch ~~
Ready/

4—_»‘{ 4 Release p
Suspend ; ‘Ready unning 4’(Exit
Suspend

wn wn

ELE] ELE]

Q1D Q1

s 5] s 5]

RIS RIS
- Activate

- Blocked

Suspend

Suspend

(b) With Two Suspend States

Figure 3.9 Process State Transition Diagram with Suspend States

Reasons for Process

Suspension

Table 3.3 Reasons for Process Suspension

Swapping

Other OS reason

Interactive user request

Timing

Parent process request

The operating system needs to release sufficient main
memory to bring in a process that is ready to execute.

The operating system may suspend a background or utility
process or a process that is suspected of causing a problem.

A user may wish to suspend execution of a program for
purposes of debugging or in connection with the use of a
resource.

A process may be executed periodically (e.g.. an
accounting or system monitoring process) and may be
suspended while waiting for the next time interval

A parent process may wish to suspend execution of a
descendent to examine or modify the suspended process, or
to coordinate the activity of various descendents.

Sequence 5

CS240

27

Processes and Resources

Virtual
Memory

Computer
Resources

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

P, is blocked, waiting for the I/O allocated to P,

P, has been swapped out (it is thus suspended)
Sequence 6 CS240

Process

Image
—| Memory Tables —]
Process
Memory 1
Devices > I/0 Tables
Files
Processes —>| File Tables
Primary Process Table
P Process 1
Process 2
Process
Process 3 Image
-
. Process
o n
[]
Process n

Figure 3.11 General Structure of Operating System Control Tables

Sequence 6

Operating System Control
Structures

Information about the current status of
each process and resource

Tables are constructed for each entity the
operating system manages

CS240 2

Memory Tables

Keep track of
allocation of main memory to processes

allocation of secondary memory to
processes

protection attributes for access to shared
memory regions

information needed to manage virtual
memory

Sequence 6 CS240

I/O Tables

Used by OS to manage I/O devices
I/O device 1s available or assigned
status of I/O operation

location in main memory being used as the
source or destination of the I/O transfer

Sequence 6 CS240 4

I/O Tables

Used by OS to manage I/O devices
[/O device is available or assigned
status of I/O operation

location in main memory being used as the
source or destination of the I/O transfer

Sequence 6 CS240 4

File Tables

Keep track of
existence of files
location on secondary memory
current Status
attributes

sometimes this information 1s maintained
by a file management system

Sequence 6 CS240

Table 34 Typical Elements of a Process Image

User Data
The modifiable part of the user space. May include program data, a user stack area, and
programs that may be modified.

User Program
The program to be executed.

Stack
Each process has one or more last-in-first-out (LIFO) stacks associated with it. A stack is
used to store parameters and calling addresses for procedure and system calls.

Process Control Block
Data needed by the OS to control the process (see Table 3.5).

Process Identification

Identifiers
Numeric identifiers that may be stored with the process control block include
eldentifier of this process
eIdentifier of the process that created this process (parent process)
*User identifier

Processor State Information

User-Visible Registers
A user-visible register is one that may be referenced by means of the machine language that the
processor executes while in user mode. Typically, there are from 8 to 32 of these registers, although
some RISC implementations have over 100,

Control and Status Registers
These are a variety of processor registers that are employed to control the operation of the processor.
These include
*Program counter: Contains the address of the next instruction to be fetched
*Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry,
equal, overflow)
*Status information: Includes interrupt enabled/disabled flags, execution mode

Stack Pointers
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used
to store parameters and calling addresses for procedure and system calls. The stack pointer points to
the top of the stack.

Table 3.5 Typical Elements of a Process Control Block (page 2 of 2)

Process Control Information

Scheduling and State Information
This is information that is needed by the operating system to perform its scheduling function. Typical
items of information:
*Process state: Defines the readiness of the process to be scheduled for execution (e.g.. unning,
ready, waiting, halted).
*Priority: One or more fields may be used to describe the scheduling priority of the process. In
some systems, several values are required (e.g., default, current, highest-allowable)
*Scheduling-related information: This will depend on the scheduling algorithm used. Examples
are the amount of time that the process has been waiting and the amount of time that the process
executed the last time it was running.
*Event: Identity of event the process is awaiting before it can be resumed.

|Data Structuring

A process may be linked to other process in a queue, ring, or some other structure. For example, all
processes in a waiting state for a particular priority level may be linked in a queue. A process may
exhibit a parent-child (creator-created) relationship with another process. The process control block
may contain pointers to other processes to support these structures.

Interprocess Communication
Various flags, signals, and messages may be associated with communication between two
independent processes. Some or all of this information may be maintained in the process control
block.

|Process Privileges

Processes are granted privileges in terms of the memory that may be accessed and the types of
instructions that may be executed. In addition, privileges may apply to the use of system utilities and
services.

Memory Management
This section may include pointers to segment and/or page tables that describe the virtual memory
assigned to this process.

|Resource Ownership and Utilization

Resources controlled by the process may be indicated, such as opened files. A history of utilization of
the processor or other resources may also be included: this information may be needed by the
scheduler.

Processor State Information

Consists of contents of processor registers
User-visible registers
Control and status registers

Stack pointers

Program status word (PSW)
contains status information

E.g. consider the EFLAGS register on
Pentium machines

Sequence 6 CS240 17

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

11

109 8 7 6 543 2 10

I MM AV (I) O|D|I|T|S|Z|,[A[,|P]|,|C
OOOOOOOOOODIICM PFFFFFFOFOFIF
P|(F
L

XID = Identification flag C DF = Direction flag

X VIP = Virtual interrupt pending X IF = Interrupt enable flag

X VIF = Virtual interrupt flag X TF = Trap flag

X AC = Alignment check S SF = Sign flag

X VM = Virtual 8086 mode SZF = Zero flag

XRF = Resume flag S AF = Auxiliary carry flag

X NT = Nested task flag S PF = Parity flag

X IOPL = 1/O privilege level S CF = Carry flag

SOF = Overflow flag

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag
Shaded bits are reserved

Figure 3.12 x86 EFLAGS Register

Process
Identification

Processor State
Information

Process Control
Information

User Stack

Private User
Address Space
(Programs, Data)

Shared Address
Space

Process 1

Process
Identification

Processor State
Information

Process Control
Information

User Stack

Private User
Address Space
(Programs, Data)

Shared Address
Space

Process 2

Process
Identification

Processor State
Information

Process Control
Information

User Stack

Private User
Address Space
(Programs, Data)

Shared Address
Space

Process n

Figure 3.13 User Processes in Virtual Memory

Process
Control
Block

Process

Control Block
Running —>
Ready
Blocked
— — —
P —P —

Figure 3.14 Process List Structures

Process Creation

Process creation steps:
Assign a unique process 1dentifier
Allocate space for the process
Initialize process control block

Set up appropriate linkages

¢.g. add new process to linked list used for
scheduling queue

Create or expand other data structures

€.g. maintain an accounting file

Sequence 6 CS240

21

When to Switch a Process

Clock interrupt

process has executed for the maximum
allowable time slice

I/O interrupt
Memory fault

memory address is in virtual memory so it
must be brought into main memory

Sequence 6 CS240 22

When to Switch a Process

Trap
error or exception occurred
may cause process to be moved to Exit state

Supervisor call

such as file open
e.g. user process calls OS function to open file

Sequence 6 CS240 23

Change of Process State

Outgoing process

save context of processor including
program counter and other registers

update the process control block of the
process that 1s currently in the Running

state

move process control block to appropriate
queue — ready; blocked; ready/suspend

Select another process for execution

Sequence 6 CS240 24

Py P, e o o P,

Kernel

(a) Separate kernel

Py P, P,
(0] [0 oS
[Func Func{ e o o [Func-
tions tions tions

Process Switching Functions

(b) OS functions execute within user processes

Py Py e e e [P, OS1| o o o |OSy

Process Switching Functions

(c) OS functions execute as separate processes

Figure 3.15 Relationship Between Operating
System and User Processes

Process

Identification
Processor State Process Control
Information Block

Process Control
Information

User Stack

Private User
Address Space
(Programs, Data)

Kernel Stack

Shared Address
Space

Figure 3.16 Process Image: Operating System
Executes Within User Space

fork

Created
Preempted
return . enough not enough memory
to user A . memory, (swapping system only)
s ~
~
M N
User AN
Running preempt S
swap out
Ready to Run »Ready to Run
reschedule
In Memory < - Swapped
swap in

system call,

A A

interrupt Kernel
Running
interrupt, sleep wakeup wakeup
interrupt return exit
) Asleep in swap out Sleep,
Zombie .. o

Figure 3.17 UNIX Process State Transition Diagram

Sequence 6

UNIX Process States

Table 3.9 UNIX Process States

User Running
Kernel Running
Ready to Run, in Memory

Asleep in Memory

Ready to Run, Swapped

Sleeping, Swapped

Preempted

Created

Zombie

Executing in user mode.
Executing in kernel mode.
Ready to run as soon as the kernel schedules it.

Unable to execute until an event occurs; process is in main memory
(a blocked state).

Process is ready to run, but the swapper must swap the process into
main memory before the kernel can schedule it to execute.

The process is awaiting an event and has been swapped to
secondary storage (a blocked state).

Process is returning from kernel to user mode, but the kernel
preempts it and does a process switch to schedule another process.

Process is newly created and not yet ready to run.

Process no longer exists, but it leaves a record for its parent process
to collect.

CS240

31

Sequence 6

UNIX Process Image

Table 3.10 UNIX Process Image

Process Text
Process Data
User Stack

Shared Memory

User-Level Context

Executable machine instructions of the program

Data accessible by the program of this process

Contains the arguments, local variables, and pointers for functions
executing in user mode

Memory shared with other processes, used for interprocess
communication

Program Counter
Processor Status Register

Stack Pointer

General-Purpose Registers

Register Context

Address of next instruction to be executed; mayv be in kernel or
user memory space of this process

Contains the hardware status at the time of preemption; contents
and format are hardware dependent

Points to the top of the kernel or user stack. depending on the mode
of operation at the time or preemption

Hardware dependent

Process Table Entry
U (user) Area

Per Process Region Table

Kermel Stack

System-Level Context

Defines state of a process; this information is always accessible to
the operating system

Process control information that needs to be accessed only in the
context of the process

Defines the mapping from virtual to physical addresses; also
contains a permission field that indicates the type of access
allowed the process: read-only, read-write, or read-execute
Contains the stack frame of kernel procedures as the process
executes in kernel mode

32

Figure 3.18 VAX/VMS Access Modes

