Chapter 2 Lectures

Stallings - 9th Ed

o Application programs
Application
programming interface
Application Libraries/utilities Software
binary interface
Operating system
Instruction Set —
Architecture
Execution hardware
: Memory
System interconnect lati
(bus) translation Hardware
I/0 devices Main
and memor
networking y

Figure 2.1 Computer Hardware and Software Structure

Operating System

A program that controls the execution of
application programs

An nterface between applications and
hardware

Operating System Objectives

Convenience
Makes the computer more convenient to use
Efficiency

Allows computer system resources to be
used 1n an efficient manner

Ability to evolve

Permit effective development, testing, and
introduction of new system functions

without interfering with service

Sequence 2 CS240 3

Services Provided by the
Operating System

Program development
Editors and debuggers

Program execution
Access to I/0 devices
Controlled access to files
Memory management
System access

Network support

Sequence 2 CS240

Services Provided by the
Operating System (2)

Error detection and response

Internal and external hardware errors

Memory error

Device failure

Software errors
Arithmetic overflow

Access forbidden memory locations

Operating system cannot grant request of
application

Sequence 2 CS240

Services Provided by the
Operating System (3)
Accounting
Collect usage statistics
Monitor performance

Used to anticipate future enhancements

Used for billing purposes
check out the log files of a unix system

where do you find this information?

Sequence 2 CS240

Operating System

Responsible for managing resources

An OS 1s just a program (or set of
programs) that 1s executed

Sequence 2 CS240

Interrupt
Processing

Device

Drivers
Monitor

Job
Sequencing

ontrol Language

Interpreter
Boundary —)

User
Program
Area

Figure 2.3 Memory Layout for a Resident Monitor

Evolution of Operating
Systems

Serial Processing

No operating system

Machines run from a console with
display lights, toggle switches, input
device, and printer

Schedule time, e.g. sign up

Setup included loading the compiler and
source program, saving compiled
program, loading and linking

Sequence 3 CS240 1

Evolution of Operating

Systems
Simple Batch Systems

Monitor
Software that controls the sequence of events

Batch jobs together

Program branches back to monitor when
finished

Sequence 3 CS240

Job Control Language (JCL)

Special type of programming language
Provides instruction to the monitor, e.g.

What compiler to use
What data to use

Sequence 3 CS240 3

Hardware Features of Interest
in Operating Systems

e User/Supervisor Mode
* |nterrupts/Traps/Exceptions
* Real-time Clock (Timer) Operation

» Support for Virtual Memory and Memory Protection

Hardware Features

Memory protection

Do not allow the memory area containing
the monitor to be altered

Timer

Prevents a job from monopolizing the
system

Sequence 3 CS240

Hardware Features

Privileged 1nstructions

Certain machine level instructions can only
be executed by the monitor

Interrupts

Early computer models did not have this
capability

Sequence 3 CS240 5

Sequence 3

Memory Protection

User program executes in user mode

Certain instructions may not be executed

Monitor executes 1n system mode

Kernel mode
Privileged instructions are executed

Protected areas of memory may be accessed

CS240 6

Traps and Interrupts and Exceptions (Oh My!)

* [rap - Caused by executing a “trap” instruction. Used to request an operation
from the operating system. Also called a “syscall” or “synchronous trap.”

e |Interrupt - caused by a hardware device when it needs service. Also called an
*asynchronous trap.”

» Exception - caused when an illegal operation (eg, divide by zero or memory
reference out of bounds) is attempted.

With all three, the processor response is the same - an “indirect
subroutine call” through the vector table, along with a change
from user to kernel mode.

System Calls Using Subroutines

User Code

JSB 1500

Kernel

1500 ;start of syscall —=

TRAPO10

University of Idaho

System

TRAPOZ20

University of ldaho

Calls Using

User Code

JSB @100

Kernel

1500 :start of syscall

Lookup Table

100 1500

Lookup Tables

—~—

System Calls Using the Trap Instruction

User Code

TRAP 100

User Space

Kernel
Kernel Space

1500 ;start of syscall

Trap Vectors
100 1500

TRAPO30

University of ldaho

Read one record from file 15 us
Execute 100 instructions 1 us

Write one record to file 15 us
TOTAL 31 us

Percent CPU Utilization = % =0.032=32%

Figure 2.4 System Utilization Example

Program A

Program A

Program B

Combined

Program A

Program B

Program C

Combined

Run Wait Run Wait
Time >
(a) Uniprogramming
Run Wait Run Wait
Wait| Run Wait Run Wait
Run | Run . Run | Run .
A B Wait A B Wait
Time >

(b) Multiprogramming with two programs

Run Wait Run Wait
Wait| Run Wait Run Wait
Wait Run Wait Run Wait
ww: w_-wE wm: Wait ﬁws w__wE wm:. Wait
Time >

Figure 2.5 Multiprogramming Example

(¢) Multiprogramming with three programs

Uniprogramming

* Processor must wait for I/O instruction to
complete before preceding

Program A Run Wait Run Wait

Time >
(a) Uniprogramming

Sequence 3 CS240

Multiprogramming

* When one job needs to wait for I/O, the

Sequence 3

processor can switch to the other job

Program A Run Wait Run Wait
Program B Wait| Run Wait Run Wait
: Run | Run - Run | Run e
Combined A B Wait A B Wait
Time >

(b) Multiprogramming with two programs

CS240 10

Program A

Program B

Program C

Combined

Sequence 3

Multiprogramming

Run Wait Run Wait
Wait| Run Wait Run Wait
Wait | Run Wait Run Wait
R:\'“ Rl‘;" R(‘:"' Wait R:" R;“ R(‘:"' Wait
Time —m—m4m4mm———————————»

(¢) Multiprogramming with three programs

CS240

11

Time Sharing

Using multiprogramming to handle
multiple interactive jobs

Processor s time is shared among
multiple users

Multiple users simultaneously access the
system through terminals

Sequence 3 CS240 14

5000

20000

32000

5000

20000
25000

32000

Monitor

JOB 1

Monitor

JOB 1

(JOB 2)

Free

(d)

5000

25000

32000

5000

15000
20000
25000

32000

Monitor

(b)

Monitor

JOB 4

(JOB 1)

(JOB 2)

Free

Figure 2.7 CTSS Operation

5000
10000

25000

32000

5000

25000

32000

Monitor
JOB 3

(JOB 2)

Monitor

Main Processor
Memory Registers
Process index i

PC

Process
list

Base
Limit

==

Other
registers o

Context

Process Data
A

Program
(code)

Context

Process Data
B

Program
(code)

Figure 2.8 Typical Process Implementation

Sequence 3

Major Achievements

Denning et.al. [DENNS8Oa] point out 5
major OS advances:

Processes
Memory Management

Information protection and security

Scheduling and resource management
System structure

Let s look at each one...

CS240 16

Sequence 3

Processes

A program 1n execution

An 1mstance of a program running on a
computer

The entity that can be assigned to and
executed on a processor

A unit of activity characterized by a
single sequential thread of execution, a
current state, and an associated set of
system resources

CS240 17

Sequence 3

Memory Management

Process 1solation

non-interference between independent procs.

Automatic allocation and management

should be transparent to programmer
Support of modular programming
Protection and access control

Long-term storage

after computer has been powered down

CS240 21

Sequence 3

Virtual Memory

Allows programmers to address memory
from a logical point of view

No hiatus between the execution of

successive processes while one process
was written out to secondary store and

the successor process was read 1n

CS240 22

Virtual Memory and File System

Implements long-term store

Information stored in named objects
called files

Sequence 3 CS240 23

Real
Memory Address

Processor

Management
Virtual Unit

Address

Disk
Address

Secondary
Memory

Figure 2.10 Virtual Memory Addressing

A.l

A0 |A2
A.S
BO|B.1 | B2 [BJ3
A7
A9
A8
BS | B.6

Main Memory

Main memory consists of a
number of fixed-length frames,
each equal to the size of a page.
For a program to execute, some
or all of its pages must be in
main memory.

User

program
B

o | R | X | SN ||| W N | =]

-
&

User
program
A

Disk

Secondary memory (disk) can

hold many fixed-length pages. A
user program consists of some
number of pages. Pages of all
programs plus the operating system
are on disk, as are files.

Figure 2.9 Virtual Memory Concepts

Sequence 3

Information Protection and

Security
Availability

Concerned with protecting the system
against interruption

Confidentiality

Assuring that users cannot read data for
which access 1s unauthorized

CS240

27

Sequence 3

Information Protection and
Security

Data integrity

Protection of data from unauthorized
modification

Authenticity

Concerned with the proper verification of

the 1dentity of users and the validity of
messages or data

CS240 28

Sequence 3

Scheduling and Resource
Management

Fairness
Give equal and fair access to resources
Diftferential responsiveness

...but, OS also needs to discriminate among
different classes of jobs

Efficiency

Maximize throughput, minimize response
time, and accommodate as many uses as
possible

CS240 29

Operating System
Service Call Service
from Process < Call
Handler (code)
Long- Short- I/O
Interrupt
> Term Term Queues
from Process Interrupt Onene Quone
Interrupt . Handler (code)
rom 1O Short-Term
Scheduler
(code)
v
Pass Control
to Process

Figure 2.11 Key Elements of an Operating System for Multiprogramming

Service processes

SVChost.exe
e I

System support Applications

processes
Service control

Environment
- subsystems
Spooler - Explorer POSIX
User
Session Services.exe . application
TS Subsytem DLLs Win32
H B B EEEBE .- (k k ‘
Ntdll.dll

System
Kernel mode

System service dispatcher

(Kernel-mode callable interfaces)

Win32 USER,

I/0O manager GDI

Device
and file

Jdseuewl
Aepd pue snyg

oI

speaay)
PUE S3SSI0IJ

J10]1
IIUDIIJII AJLANIIG

Graphics
drivers

uoneIngryuo))
[ed
danpadoad [Bd0|

JOgeUuBW JIMO0J
AJouwduI [enjyaip

system
drivers

AYIBD WIIJSAS L]
Jdgeuew 39[qO
(A13S13894) J93eurU

Kernel

Hardware abstraction layer (HAL)

Lsass = local security authentication server Colored area indicates Executive
POSIX = portable operating system interface

GDI = graphics device interface

DLL = dynamic link libraries

Figure 2.14 Windows Architecture

Hnmm

File Subsystem

s

Buffer Cache

Device Drivers

User Programs

T\

b,
b,
g

System Call Interface

Hardware Control

Hardware Level

Libraries

User Level

Process
Control
Subsystem

Inter-process
communication

Scheduler

Memory
management

Kernel Level

Figure 2.15 Traditional UNIX Kernel

file mappings

device

mappings ¢

anonymous
mappings

disk driver

virtual
memory
framework

block
device
switch

tape driver

coff

a.out

Common

Facilities

network
driver

driver

NFS

FFS

vnode/vfs

interface
s5fs

RFS

time-sharing

scheduler processes

framework

system
processes

Figure 2.16 Modern UNIX Kernel

m m m m . FreeBSD 11.0 |
m m BSD m m . NetBSD 7.0 |
: : Family : : : | ; _ _ __
" " < " " " ; Oﬁmswmc 6.0 h_
m ” BSD (Berkeley Software Distribution) 4.4 m m m m m
m ” ” SunOS 4.1.4 , " , , ,
m _ _ ” z.mxﬁmﬁmv w.wm|m.V OS X (now macOS) 10.12 m
: : . Xenix OS : : : : : :
" . . GNU " " " " " "
m m m Rl
Research Unix (Bell Labs) 10.5 m m m m m m
. SystemV
: Family : :

1970 1980 1990 2000 2010 2016

Figure 2.17 Unix Family Tree

module

*next

*name

version

srcversion

num_gpl_syms

num_syms

num_exentries

FAT

*syms

state

extable

Figure 2.18 Example List of Linux Kernel Modules

kernel_symbol

module

*next

*name

version

srcversion

num_gpl_syms

num_syms

num_exentries VFAT

*syms

state

extable

symbol_table

processes © o o ® o o %
P
%
=

signals < system calls

A
processes
& scheduler
/ file network
systems protocols _
virtual 2
memory l l E
char device block device network de-
drivers drivers vice drivers
4
traps & physical :
faults memory Interrupts
e N A V. B .
system network inter-

CPU . terminal disk %
memory face controller =
=

Figure 2.19 Linux Kernel Components

Applications

()) é

Home Dialer SMS/MMS IM Browser Camera Calculator

\. J J \.

[)) é

Contacts Voice Dial Email Calendar 11\)/{edia Albums
\) ayer

\ J J \.

Application Framework

() (

Content Providers View System

\ J \,

N

Notification
Manager

Windows
Manager

-
Activity Manager

J

) () é)

Resource Manager Location Manager XMPP Service

\, J \, J

Telephony

Package Manager Manager

\, J

System Libraries Android Runtime

N

Media Framework SQLite Core Libraries

\. J

()

FreeType LibWebCore Dalvik Virtual Machine

Libc

Linux Kernel

() ()

Display Driver Camera Driver Bluetooth Driver

\.

[Flash Memory | [Binder (IPC)
Driver Driver

J

() ())

USB Driver \ Keypad Driver) \ WiFi Driver) Audio Drivers) Marl:ggeill;ent

.

Implementation:

Applications, Application Framework: Java

System Libraries, Android Runtime: C and C++

Linux Kernel: C

Figure 2.20 Android Software Architecture

— Resourcesb

Native Code
|
package
AN AN zZip AN
Source > ¢ ¢ ¢ ————3 DexFile APK
| ; install
— Resourcesb
N Native Code
Dex File |
I’, _________ ale_x_o;ot_ _; \::' i_d_e;(Z_o_aE | ;_Ie_x:&\mative code
' quickened dex.- _ _ N N -7] : install
T ~af Odex)i gy p e |4 '
' Dalvik File || ART, ~
| T
| — 1 ! Libraries
[
: R AT I .
: Dalvik Native ," Native :
N o L L _____ P ‘\ /’

Figure 2.21 The Life Cycle of an APK

Applications and Framework

Binder IPC
Android System Services

Media Server System Server

) () (

Power
Manager
Service

MediaPlayer
Service

Window

AudioFlinger
Manager

\
\

Other Media
Services

Camera
Service

Activity
Manager

Android Runtime/Dalvik

Hardware Abstraction Layer (HAL)
4

4 \ [\
Audio HAL Graphics HAL

\ y,

Linux Kernel

(\ [\ [)

Camera Driver Audio Driver Display Drivers

(ALSA, OSS, etc]

\ J \ J \ y,

Figure 2.22 Android System Architecture

