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Figure 2.1 Computer Hardware and Software Structure



Operating System

A program that controls the execution of
application programs

An nterface between applications and
hardware



Operating System Objectives

Convenience
Makes the computer more convenient to use
Efficiency

Allows computer system resources to be
used 1n an efficient manner

Ability to evolve

Permit effective development, testing, and
introduction of new system functions

without interfering with service
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Services Provided by the
Operating System

Program development
Editors and debuggers

Program execution
Access to I/0 devices
Controlled access to files
Memory management
System access

Network support
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Services Provided by the
Operating System (2)

Error detection and response

Internal and external hardware errors

Memory error

Device failure

Software errors
Arithmetic overflow

Access forbidden memory locations

Operating system cannot grant request of
application
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Services Provided by the
Operating System (3)
Accounting
Collect usage statistics
Monitor performance

Used to anticipate future enhancements

Used for billing purposes
check out the log files of a unix system

where do you find this information?
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Operating System

Responsible for managing resources

An OS 1s just a program (or set of
programs) that 1s executed
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Figure 2.3 Memory Layout for a Resident Monitor



Evolution of Operating
Systems

Serial Processing

No operating system

Machines run from a console with
display lights, toggle switches, input
device, and printer

Schedule time, e.g. sign up

Setup included loading the compiler and
source program, saving compiled
program, loading and linking
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Evolution of Operating

Systems
Simple Batch Systems

Monitor
Software that controls the sequence of events

Batch jobs together

Program branches back to monitor when
finished
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Job Control Language (JCL)

Special type of programming language
Provides instruction to the monitor, e.g.

What compiler to use
What data to use

Sequence 3 CS240 3



Hardware Features of Interest
in Operating Systems

e User/Supervisor Mode
* |nterrupts/Traps/Exceptions
* Real-time Clock (Timer) Operation

» Support for Virtual Memory and Memory Protection



Hardware Features

Memory protection

Do not allow the memory area containing
the monitor to be altered

Timer

Prevents a job from monopolizing the
system
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Hardware Features

Privileged 1nstructions

Certain machine level instructions can only
be executed by the monitor

Interrupts

Early computer models did not have this
capability
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Sequence 3

Memory Protection

User program executes in user mode

Certain instructions may not be executed

Monitor executes 1n system mode

Kernel mode
Privileged instructions are executed

Protected areas of memory may be accessed

CS240 6



Traps and Interrupts and Exceptions (Oh My!)

* [rap - Caused by executing a “trap” instruction. Used to request an operation
from the operating system. Also called a “syscall” or “synchronous trap.”

e |Interrupt - caused by a hardware device when it needs service. Also called an
*asynchronous trap.”

» Exception - caused when an illegal operation (eg, divide by zero or memory
reference out of bounds) is attempted.

With all three, the processor response is the same - an “indirect
subroutine call” through the vector table, along with a change
from user to kernel mode.



System Calls Using Subroutines

User Code

JSB 1500

Kernel

1500 ;start of syscall —=
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System
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Calls Using

User Code

JSB @100

Kernel

1500 :start of syscall

Lookup Table

100 1500

Lookup Tables
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System Calls Using the Trap Instruction

User Code

TRAP 100

User Space

Kernel
Kernel Space

1500 ;start of syscall

Trap Vectors
100 1500

TRAPO30

University of ldaho



Read one record from file 15 us
Execute 100 instructions 1 us

Write one record to file 15 us
TOTAL 31 us

Percent CPU Utilization = % =0.032=32%

Figure 2.4 System Utilization Example
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Figure 2.5 Multiprogramming Example

(¢) Multiprogramming with three programs



Uniprogramming

* Processor must wait for I/O instruction to
complete before preceding

Program A Run Wait Run Wait

Time >
(a) Uniprogramming
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Multiprogramming

* When one job needs to wait for I/O, the

Sequence 3

processor can switch to the other job

Program A Run Wait Run Wait
Program B Wait| Run Wait Run Wait
: Run | Run - Run | Run e
Combined A B Wait A B Wait
Time >

(b) Multiprogramming with two programs
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Program A

Program B

Program C

Combined

Sequence 3

Multiprogramming

Run Wait Run Wait
Wait| Run Wait Run Wait
Wait | Run Wait Run Wait
R:\'“ Rl‘;" R(‘:"' Wait R:" R;“ R(‘:"' Wait
Time —m—m4m4mm———————————»

(¢) Multiprogramming with three programs
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Time Sharing

Using multiprogramming to handle
multiple interactive jobs

Processor s time is shared among
multiple users

Multiple users simultaneously access the
system through terminals

Sequence 3 CS240 14
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Sequence 3

Major Achievements

Denning et.al. [DENNS8Oa] point out 5
major OS advances:

Processes
Memory Management

Information protection and security

Scheduling and resource management
System structure

Let s look at each one...

CS240 16



Sequence 3

Processes

A program 1n execution

An 1mstance of a program running on a
computer

The entity that can be assigned to and
executed on a processor

A unit of activity characterized by a
single sequential thread of execution, a
current state, and an associated set of
system resources

CS240 17



Sequence 3

Memory Management

Process 1solation

non-interference between independent procs.

Automatic allocation and management

should be transparent to programmer
Support of modular programming
Protection and access control

Long-term storage

after computer has been powered down

CS240 21



Sequence 3

Virtual Memory

Allows programmers to address memory
from a logical point of view

No hiatus between the execution of

successive processes while one process
was written out to secondary store and

the successor process was read 1n

CS240 22



Virtual Memory and File System

Implements long-term store

Information stored in named objects
called files

Sequence 3 CS240 23
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Figure 2.10 Virtual Memory Addressing
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A9
A8
BS | B.6

Main Memory

Main memory consists of a
number of fixed-length frames,
each equal to the size of a page.
For a program to execute, some
or all of its pages must be in
main memory.

User

program
B

o | R | X | SN ||| W N | =]

-
&

User
program
A

Disk

Secondary memory (disk) can

hold many fixed-length pages. A
user program consists of some
number of pages. Pages of all
programs plus the operating system
are on disk, as are files.

Figure 2.9 Virtual Memory Concepts



Sequence 3

Information Protection and

Security
Availability

Concerned with protecting the system
against interruption

Confidentiality

Assuring that users cannot read data for
which access 1s unauthorized

CS240
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Sequence 3

Information Protection and
Security

Data integrity

Protection of data from unauthorized
modification

Authenticity

Concerned with the proper verification of

the 1dentity of users and the validity of
messages or data

CS240 28



Sequence 3

Scheduling and Resource
Management

Fairness
Give equal and fair access to resources
Diftferential responsiveness

...but, OS also needs to discriminate among
different classes of jobs

Efficiency

Maximize throughput, minimize response
time, and accommodate as many uses as
possible

CS240 29
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Figure 2.11 Key Elements of an Operating System for Multiprogramming
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Figure 2.14 Windows Architecture
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Figure 2.15 Traditional UNIX Kernel
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Figure 2.18 Example List of Linux Kernel Modules
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Figure 2.21 The Life Cycle of an APK
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Figure 2.22 Android System Architecture



