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Multiprocessor/Multicore Classifications
• Loosely Coupled/ Distributed/Cluster


• Supercomputer


• Beowulf


• Asymmetric Multiprocessor - Specialized processors


• I/O Processor


• Floating point processor


• GPU


• Tightly coupled Processor


• Multicore



Granularity



Scheduling Performance
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Figure 10.1  Comparison of Scheduling Performance for One and Two Processors
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Thread Scheduling

• Load Sharing - CPU treated as an system resource


• Gang Scheduling - Set of threads scheduled on CPUs as a unit


• Dedicated Processor - threads are assigned to a particular CPU


• Affinity - the ability to assign a thread to a CPU


• Soft affinity - scheduler tries, but might not succeed


• Dynamic Scheduling - number of threads can be changed



Load Sharing - Most Common
Scheduling Policies

• First Come First Served (FCFS)


• Smallest Number of Threads First


• Preemptive smallest number of threads first



Load Sharing
Most Common, but:
• Central queue of threads becomes a bottleneck


• Preempted threads unlikely to be assigned to same CPU again


• No guarantee that all the threads of a process scheduled at same time

Performance enhancements:
• Mach Kernel: local run queue plus shared global run queue


• Solaris: lightweight threads


• Gang Scheduling



Gang Scheduling
• All threads of a process (or other group) scheduled at once


• Reduces context switching within threads of a process


• Applied to fine or medium grained applications

Figure 10.2  Gang Scheduling 
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(b) Weighted scheduling
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Dedicated Scheduling
Minimizes expensive context switching



Multicore Scheduling
Typical Multicore Processor

Figure 10.3  AMD Bulldozer Architecture
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Real-Time Scheduling
• In addition to performing the correct computation, task must meet certain 

time constraints


• Hard real time - system must meet time constraint (deadline), otherwise 
task will not execute properly


• Soft real time - deadline is desirable, but not mandatory


• Type of real time task


• Aperiodic task - has deadline by which it must finish and/or start


• Periodic task - repetitive execution, “must run once within a second”



Real Time Characteristics
• Determinism - system timing is same for all input or conditions


• Responsiveness - how long does system take to respond to an event


• User control - how much can user influence operation of system


• Reliability - what is behavior of system in response to failures


• Fail-Soft Operation - in event of failure/fault, can task stop in a 
condition that is not detrimental to overall system



Real-Time Scheduling

• Static table-driven approaches - predetermined schedule


• Static priority-driven preemptive approaches - priorities are modified in 
response to conditions


• Dynamic planning-based approaches - schedule is determines at run time


• Dynamic best effort approaches - system tries to meet all deadlines, aborts/
ignores any process that doesn’t meet its deadline



Real-Time Schedules



Real-Time Schedules



Deadline Scheduling
Information needed for scheduling

• Ready Time


• Starting Deadline


• Completion Deadline


• Processing time


• Resource Needs


• Priority 


• Subtask structure
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Figure 10.5  Scheduling of Periodic Real-time Tasks with Completion Deadlines (based on Table 10.2)
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Rate Monotonic Scheduling

• Task priority is based on task’s period


• Highest priority task is one with shortest period


• Next highest priority task is one with next shortest period, etc. 

Processing ProcessingIdleP

task P execution time C

task P period T

Cycle 1 Cycle 2

Figure 10.7  Periodic Task Timing Diagram
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Linux Real-time Scheduling
• SCHED_FIFO - First-in-first-out real time threads


• When executing FIFO thread is interrupted, thread placed in proper priority 
queue


• When a FIFO thread becomes ready, if it has higher priority than currently 
executing thread is preempted and highest priority thread executes. For 
equal priority threads, longest waiting thread executes


• Currently executing thread continues executing, unless a higher priority 
thread becomes ready, or thread is blocked for an event, or thread 
voluntarily gives up processor (sched_yield)



• SCHED_RR - round robin real-time threads


• Real-time threads take priority over non-real-time threads


• SCHED_NORMAL - other, non-real-time threads

Linux Real-time Scheduling (Con’t)

Priorities - lower value is higher priority
• Real-time priorities assigned values 1-99


• SCHED_NORMAL assigned value 100-139




Windows Scheduling
• Priority-based preemptive scheduler


• Two classes (“bands”)


• Real-time priority class - all threads have fixed priority, have precedence 
over normal threads


• Variable priority class - initial priority, but may be raised over task’s lifetime


• Priority queues - managed round robin



base priority normal
below normal

lowest

above normal
highest

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

Process
Priority

Thread's Base
Priority

Thread's Dynamic
Priority

Figure 10.15  Example of Windows Priority Relationship


