
Chapter 10
Stallings 9e

Multiprocessor/Multicore Classifications
• Loosely Coupled/ Distributed/Cluster

• Supercomputer

• Beowulf

• Asymmetric Multiprocessor - Specialized processors

• I/O Processor

• Floating point processor

• GPU

• Tightly coupled Processor

• Multicore

Granularity

Scheduling Performance

Single

processor

Dual

processor

S
R

T
 t

o
 F

C
F

S
 t

h
r
o
u

g
h

p
u

t
r
a
ti

o

0

1.00

1.05

1.10

1.15

1.20

1.25

1 2 3 4 5

Coefficient of variation

(a) Comparison of RR and FCFS

Coefficient of variation

(b) Comparison of SRT and FCFS

Figure 10.1 Comparison of Scheduling Performance for One and Two Processors

0 1 2

Single

processor

Dual

processor

0.98

R
R

 t
o
 F

C
F

S
 t

h
r
o
u

g
h

p
u

t
r
a
ti

o

3 4 5

1.00

1.05

1.10

1.15

Thread Scheduling

• Load Sharing - CPU treated as an system resource

• Gang Scheduling - Set of threads scheduled on CPUs as a unit

• Dedicated Processor - threads are assigned to a particular CPU

• Affinity - the ability to assign a thread to a CPU

• Soft affinity - scheduler tries, but might not succeed

• Dynamic Scheduling - number of threads can be changed

Load Sharing - Most Common
Scheduling Policies

• First Come First Served (FCFS)

• Smallest Number of Threads First

• Preemptive smallest number of threads first

Load Sharing
Most Common, but:
• Central queue of threads becomes a bottleneck

• Preempted threads unlikely to be assigned to same CPU again

• No guarantee that all the threads of a process scheduled at same time

Performance enhancements:
• Mach Kernel: local run queue plus shared global run queue

• Solaris: lightweight threads

• Gang Scheduling

Gang Scheduling
• All threads of a process (or other group) scheduled at once

• Reduces context switching within threads of a process

• Applied to fine or medium grained applications

Figure 10.2 Gang Scheduling

(a) Uniform scheduling

Processor

Ti
m

e
sl

ot

P1

0

1

2

3

4

P2 P3 P4

A1

B1 idle idle idle

B1 idle idle idle

A2 A3 A4

A1 A2 A3 A4

A1 A2 A3 A4

(b) Weighted scheduling

Processor

Ti
m

e
sl

ot

P1

0

1

2

3

4

P2 P3 P4

A1

B1 idle idle idle

A2 A3 A4

A1 A2 A3 A4

A1 A2 A3 A4

A1 A2 A3 A4

Dedicated Scheduling
Minimizes expensive context switching

Multicore Scheduling
Typical Multicore Processor

Figure 10.3 AMD Bulldozer Architecture

Core 0

16 kB L1D
Cache

16 kB L1D
Cache

16 kB L1D
Cache

16 kB L1D
Cache

2 MB
L2 Cache

2 MB
L2 Cache

Core 1

2 8B @ 1.86 GT/s

Core 6 Core 7

8 MB
L3 Cache

DDR3 Memory
Controllers Hypertransport 3.1

8 2B @ 6.4 GT/s

Real-Time Scheduling
• In addition to performing the correct computation, task must meet certain

time constraints

• Hard real time - system must meet time constraint (deadline), otherwise
task will not execute properly

• Soft real time - deadline is desirable, but not mandatory

• Type of real time task

• Aperiodic task - has deadline by which it must finish and/or start

• Periodic task - repetitive execution, “must run once within a second”

Real Time Characteristics
• Determinism - system timing is same for all input or conditions

• Responsiveness - how long does system take to respond to an event

• User control - how much can user influence operation of system

• Reliability - what is behavior of system in response to failures

• Fail-Soft Operation - in event of failure/fault, can task stop in a
condition that is not detrimental to overall system

Real-Time Scheduling

• Static table-driven approaches - predetermined schedule

• Static priority-driven preemptive approaches - priorities are modified in
response to conditions

• Dynamic planning-based approaches - schedule is determines at run time

• Dynamic best effort approaches - system tries to meet all deadlines, aborts/
ignores any process that doesn’t meet its deadline

Real-Time Schedules

Real-Time Schedules

Deadline Scheduling
Information needed for scheduling

• Ready Time

• Starting Deadline

• Completion Deadline

• Processing time

• Resource Needs

• Priority

• Subtask structure

9070402010 30 50 60 80 1000 Time(ms)
B1 B2

A1 A2 A3 A4 A5Arrival times, execution
times, and deadlines

A1
deadline

A2
deadline

A3
deadline

A4
deadline

A5
deadline

B1
deadline

B2
deadline

A3 A4 A5A1 B1 A2 B1 B2 B2 B2

A1 A2 A3 A4 A5, B2B1
(missed)

A1
(missed)

A2 A3 A4
(missed)

A5, B2

B1 B2A2 A3 A5

A1 A2 A3 A4 A5, B2B1

A1 B1 A2 B1 A3 B2 A4 B2 A5

Fixed-priority scheduling;
A has priority

Fixed-priority scheduling;
B has priority

Earliest deadline scheduling
using completion deadlines

Figure 10.5 Scheduling of Periodic Real-time Tasks with Completion Deadlines (based on Table 10.2)

B1

Rate Monotonic Scheduling

• Task priority is based on task’s period

• Highest priority task is one with shortest period

• Next highest priority task is one with next shortest period, etc.

Processing ProcessingIdleP

task P execution time C

task P period T

Cycle 1 Cycle 2

Figure 10.7 Periodic Task Timing Diagram

Time

Linux Real-time Scheduling
• SCHED_FIFO - First-in-first-out real time threads

• When executing FIFO thread is interrupted, thread placed in proper priority
queue

• When a FIFO thread becomes ready, if it has higher priority than currently
executing thread is preempted and highest priority thread executes. For
equal priority threads, longest waiting thread executes

• Currently executing thread continues executing, unless a higher priority
thread becomes ready, or thread is blocked for an event, or thread
voluntarily gives up processor (sched_yield)

• SCHED_RR - round robin real-time threads

• Real-time threads take priority over non-real-time threads

• SCHED_NORMAL - other, non-real-time threads

Linux Real-time Scheduling (Con’t)

Priorities - lower value is higher priority
• Real-time priorities assigned values 1-99

• SCHED_NORMAL assigned value 100-139

Windows Scheduling
• Priority-based preemptive scheduler

• Two classes (“bands”)

• Real-time priority class - all threads have fixed priority, have precedence
over normal threads

• Variable priority class - initial priority, but may be raised over task’s lifetime

• Priority queues - managed round robin

base priority normal
below normal

lowest

above normal
highest

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

Process
Priority

Thread's Base
Priority

Thread's Dynamic
Priority

Figure 10.15 Example of Windows Priority Relationship

