
CS210 - Programming Languages

Lab Assignment #1

Fall 2020

The purpose of this assignment is to develop the first part of a language processor, sometimes
called the scanner. Note that for the next several assignments you will be building on previous
assignments, eventually creating an entire lexical analyzer (or lexer). The language we will be
analyzing is called CCX, which is a C-like language that is used for programming embedded
systems. You don’t really need to know anything about this language - however, since its
syntax is similar to C, you can probably figure out the meaning of a program written in CCX.
An example CCX program is provided below - this example can be used as a test input for
your scanner.

The first step in the lexical analysis process is to take the source code input file specified on
the command line and separate it into lexemes - the fundamental components that make up the
language. Your program should open the input file, then print out each individual lexeme on a
separate line on the output. Your program can assume that the input is a correctly written CCX
program - we won’t worry about syntactically incorrect programs until a later assignment.

Your program should be written in C (not C++). Since you will want your program to do its
own parsing, your program should use C’s raw I/O system calls to perform the file opening
and input (similar to your assignment 0).

A sample CCX program is shown below. This program simply prints the string "Hello,

world" to the screen and then prints the arguments to the program if any were provided.
You have probably seen similar programs like this before.

/*

* Hello world with args.

*/

procedure main(argc: integer; argv: string_vector_type) is

begin

printf("Hello, world\n");

loop

argc := argc - 1;

exit when (argc = 0);

printf("arg[%d]: %s\n", argc, argv[argc]);

end loop;

end main;

Figure 1: CCX Sample 1

The output that your program produces while processing this file should look exactly like that
below.

procedure

main

(

argc

:

integer

;

argv

:

string_vector_type

)

is

begin

printf

(

"Hello, world\n"

)

;

loop

argc

:=

argc

-

1

;

exit

when

(

argc

=

0

)

;

printf

(

"arg[\%d]: \%s\n"

,

argc

,

argv

[

argc

]

)

;

end

loop

;

end

main

;

Some Hints:

• Comments use the traditional C syntax for comments - that is, they start with /* and end
with */ . The comment text should not be included in your output.

• Some lexemes start with an alpha character, then consist of zero or more alpha or nu-
meric characters. The underscore character is considered to be an alpha character.

• Numeric lexemes start with a numeric character, then zero or more additional numeric
characters.

• Strings start with ", include 1 or more characters, and are terminated with ". The entire
string should be treated as a single lexeme.

• Please examine this output closely. Your program will be tested by comparing the output
of your program with the desired output - your output should match exactly. There
should be no extra spaces or extra lines in the output that your program produces, except
those contained in strings.

