
CS121 - Computer Science II
Lab Assignment #9

Fall 2011

The purpose of this exercise is to observe the behavior of several of the search algorithms we
discussed in class, using a technique called program instrumentation. This involves adding
code that counts occurrences of certain code sequences that characterize the algorithm imple-
mented in the function. In the case of searching, the usual measure that is instrumented is the
number of key comparisons performed during the search.

For this assignment, you are to write functions for the linear, binary, and hash searches, and
instrument them to count key comparisons. Use arrays (ie, contiguous storage) for these func-
tions. The keys can be ints. You can use the functions directly from the book if you wish,
modified as necessary to include the instrumentation. Since the behavior changes depending
on whether the key value is found or not, your instrumentation should keep separate track of
the number of comparisons required if the key value is found, and if the value is not found.

For the linear search, the average number of comparisons should be around n

2
for a value that

is found in the list, and n for a value that is not found. Verify that your results match this
expectation.

For the binary search, the average comparisons should be O(log n). The book presents two
variants of the binary search - one that always goes through the entire search, even when
the value is found early, and another that checks to see if the value has been found (which
requires a additional key comparison during each pass) and terminates early if found. Try
both algorithms and see which one performs better.

The hash search is of order a constant for a sparse list, but approaches O(n) as the search list
becomes more full. Verify that this is the case, by using hash arrays varying in size from 50%
of the search list up to 95%, in increments of 5% (that is, try a hash array of 50%, then 55%,
etc.).

For this assignment you will need both a list to search and a list of keys to find within the list.
You can generate these lists using a random number generator, and either a separate program
to generate the lists, or one or more “utility” functions called from your main program to
generate the lists.

Use lists that are large enough so that your results are meaningful.

For submission, you should supply the code necessary to actually execute the search functions
- this can be either a single main program that calls all of your search functions, or separate
main program for each function. In addition to your code, you should include a short report
on your findings that discusses the results you found, including any discrepancies between
what you expected and what you observed. Submit all of this in a single zip or tar file using
cscheckin.

1


