
CS121 - Computer Science II
Lab Assignment #5

Fall 2011

The purpose of this exercise is to implement a queue class using an array-based circular queue.

The Producer-Consumer model is very common in computer applications. One program (or
thread within a program) is the producer - it is responsible for creating objects (characters, lines
of text, messages, etc.) and placing them in a queue. The consumer is a second program (or
thread) which removes the objects from the queue and processes them. The advantage of such
a scheme is that the objects can be produced faster than they can consumed, at least for a
short time - the queue acts as a “buffer” which stores the unprocessed objects during bursts of
production, and allows the consumer to ”catch up” during periods of slow production.

A very common example of this process that you probably use every day is the shell’s ring
buffer for characters. The characters you type are placed in a circular queue (the “ring buffer”)
by that part of the shell that performs input (the producer), and are removed from the queue
by the program that tokenizes the input (splits the input into groups of chars separated by
white space) and interprets the results (the consumer). Most of the time, the consumer is able
to keep up with the producer; however, if the shell is processing a command that takes a long
time (such as a long directory listing or compile), the user can type chars that are placed in the
queue, which are not processed until the shell finishes the previous command.

Two problems might occur with the producer consumer model. It is possible for the queue to
fill up if the producer creates objects faster than they can be consumed for an extended period
of time - hopefully the queue is sized such that this situation rarely occurs, as there is often
nothing that can be done except to ignore the items produced when the queue is full; some
information might be lost. The second problem is more common - the consumer tries to take
items from an empty queue. This situation is less traumatic - the consumer usually just waits
for more items to be produced.

For this assignment, you are to implement a circular queue class, and demonstrate its oper-
ation by writing producer and consumer functions. (Normally such a system would involve
writing separate programs, or separate threads, for the producer and consumer. Since this is
beyond the scope of the course, we will write two functions instead.) The items to be queued
are chars.

Input should come from standard input, and will consist of the following commands:

• P chars - Produce the following characters. That is, the producer should place the characters
into the queue.

• C n - Consume the number of characters specified. The consumer should remove the specified
number of characters from the queue and output them.

• D - display the queue contents

• N - Print out the number of items currently in the queue

• Q - quit

1



If there is no room in the queue for all the characters being produced, the producer should
enqueue the characters that will fit, ignore the remaining, and print a message on the screen
that some of the characters were lost. If the consumer is asked to dequeue more characters
than are in the buffer, it should dequeue all the characters in the queue and print them. The
next time a C command is issued, first the number of characters that were requested in the
previous C commands that could not be fulfilled should be dequeued and printed, followed
by those in the new request.

Normally, we want the queue to be large enough so that the probability of queue overflow is
very small. However, for testing purposes a small queue is desirable, so the proper full-queue
behavior can be tested.

For this exercise, you should create a class for your queue implementation. The class should
include a constructor that accepts the size of queue to be created; your main program should
input the size of queue to be created, then use the constructor to create the queue. All queue
operations must be performedwith publicmethods - the queue data itself should be private.
The queue must be implemented as an array.

An example session is shown below. Note that the queue size has been set to 10 in this example
(comments to the right are not part of the input):

$> ./a.out

Enter size of queue: 10

P testing // put chars into queue

N // inquire how many chars in in queue

There are 7 items in the queue

C 4 // consume 4 of the chars in queue

test

D // display current contents of queue

ing

C 3

ing

P long message // attempt to add too many chars

Error-queue full, some chars will be lost

C 10

long messa

P new msg

C 10 // attempt to consume more chars than in queue

new msg

P test

P 123

N // check to see how many chars are in the queue

7

C 3

tes // remaining chars from last request

t12 // chars from this request

Q

2


