CS121 - Computer Science |l
Lab Assignment #12
Fall 2011

The purpose of this exercise is to build your own code library.

Over the semester, you have written several functions that perform operations on data struc-
tures - in other words, you now have your own ”bag of tricks” to do many useful operations
on data structures. The purpose of this exercise is to create a library of these functions that can
be incorporated in your programs whenever any of the functions are needed.

A library is a special file that includes a table of contents, so that the individual functions can
be identified as separate entities. A library of object files, for example, allows the linker to
selectively include only those functions that are actually used by your program. By contrast, a
regular object file will be included in its entirety, even if some of the functions are never used.

Along with the library itself, usually a header file is written that contains the declarations of
the functions and related types included in library. As an example, the standard C library
contains all of the functions that are included in the header files, such as stdlib.h,stdio.h,
etc. (One notable exception is the math library, which is in a separate library file and must be
explicitly specified in addition to the regular C library).

On Linux/Unix, the name of the program that is used to create library files is ar, which stands
for “archiver.” Actually, it can be used to create a library of any collection of files, but is most
often used to create object libraries. An example use of the ar command is below:

> ar -r mylib.a objfilel.o objfile2.0

In the above example, a library named mylib.a will be created, using the functions found in
objfilel.o and objfile2.o. The -r indicates replace, which will insert object files into the
library, replacing any current functions with the same name. Other common operations are -p
(print), -d (delete), and -x (extract). There are other options also; for a more complete list of
what ar can do, you can type man ar.

Once a library is created, it can be specified on the command line for g++:
g++ main.c subs.c mylib.a

In the above example, the compiler will be invoked to compile the files main.c and subs.c.
Then, the library named mylib.a will be searched, and any functions that are called from
main.c and subs.c will be incorporated into the executable. It is important that the library be
specified last, since the linker will only search for functions that have been specified in the
previous files. In other words, as the linker processes the modules in main.c and subs.c, it
creates a list of functions that are called, then only searches for those functions within mylib.a.



For this assignemnt, you are to create a library of the functions that create and utilize the data
structures you have built for the various assignments. You might want to “generalize” these
functions, so they can be used in applications other than just the assignments you did for the
class. So far, in lab you have created functions that involve:

Linked lists

Stacks

Circular queues

¢ Queues using linked lists

The Bubble sort (two versions)

e The selection sort

The Quicksort (two versions)

The radix sort.

Note that you do not want to include the main programs in your library.

Turn in the file(s) that you use to create your library, along with the header files you wrote
to declare the functions in your library. Include all of these files in a zip or tar file, and use
cscheckin to submit the zip /tar file.



