
B
ig

 O
 N

ot
at

io
nAlgorithm Efficiency

Measuring the efficiency of algorithms

The topic of algorithms is central to computer science. Measuring an algorithm’s efficiency is
important because the choice of an algorithm for a given application often has a great impact,
even with the fast processors we have today. Word processors, ATMs, video games and life
support systems all depend on efficient algorithms.

Consider two searching algorithms. What does it mean to compare the algorithms and con-
clude that one is better than the other?

The analysis of algorithms is an area of theoretical computer science that provides tools for
contrasting the efficiency of different methods of solution. Notice the use of the term methods
of solution rather than programs; it is important to emphasize that the analysis concerns itself
primarily with significant differences in efficiency - differences that you can usually obtain only
through superior methods of solution and rarely through clever tricks or “tweaks” in coding.

Although the efficient use of both time and space is important, inexpensive memory has re-
duced the significance of space efficiency. Thus, we will focus primarily on time efficiency.
How do you compare the time efficiency of two algorithms that solve the same problem? One
possible approach is to implement the two algorithms in C++ and run the programs. There
are three difficulties with this approach:

1. How are the algorithms coded? Does one algorithm run faster than another because
of better programming? We should not compare implementations rather than the algo-
rithms. Implementations are sensitive to factors such as programming style that cloud
the issue.

2. What computer should you use? The only fair way would be to use the same computer
for both programs. But even then, the particular operations that one algorithm uses may
be faster or slower than the other – and may be just the reverse on a different computer.
In short, we should compare the efficiency of the algorithms independent of a particular
computer.

3. What data should the programs use? There is always a danger that we will select in-
stances of the problem for which one of the algorithms runs uncharacteristically fast.
For example, consider comparing a sequential search and a binary search of a sorted ar-
ray. If the test case happens to be that we are searching for an item that happens to be
the smallest in the array, the sequential search will find the item more quickly than the
binary search.

To overcome these difficulties, computer scientists employ mathematical techniques that ana-
lyze algorithms independently of specific implementations, computers or data. You begin this
analysis by counting the number of significant operations in a particular solution.

As an example of calculating the time it takes to execute a piece of code, consider the nested
for loops below:

1



B
ig

 O
 N

ot
at

io
nfor (i = 1; i <= N; ++i)

for (j = 1; j <= i; ++j)

for (k = 0; k < 5; ++k)

Task T;

If task T requires t time units, the innermost loop on k requires 5 ∗ t time units. We will discuss
how to calculate the total time, which is: 5 ∗ t ∗ N ∗ (N + 1)/2 time units.

This example derives an algorithm’s time requirements as a function of problem size. The
way to measure a problem’s size depends on the application. The searches we have discussed
depend on the size of the array we are searching. The most important thing to learn is how
quickly the algorithm’s time requirement grows as a function of the problem size. A statement
such as:

Algorithm A requires time proportional to f(N).

enables you to compare algorithm Awith another algorithm Bwhich requires g(N) time units.

Algorithm A is said to be order f(N), denoted as O(f(N)); f(N) is called the algorithm’s
growth rate function. Because the notation uses the capital letter ’O’ to denote order, it is
called Big O notation. If a problem of size N requires time that is directly proportional to N ,
the problem is O(N) – that is, order N . If the time requirement is directly proportional to N2,
the problem is O(N2), and so on.

Definition of the Order of an Algorithm: Algorithm A is order f(N) – denoted O(f(N)) –
if constants c and N0 exist such that A requires no more than c ∗ f(N) time units to solve a
problem of size N >= N0. That is, g(N) is O(f(N)) if the constants c and N0 exist such that
g(N) < c ∗ f(N) for N >= N0. If g(N) is the time required to run Algorithm A, then we say
that A is O(F (N)).

The requirement N >= N0 in the definition of O(f(N)) means that the time estimate is correct
for sufficiently large problems. This means that the analysis doesn’t hold for small problems;
however, we are usually not worried about the efficiency of small problems.

These growth-rate functions have the following intuitive interpretations:

1 or C A growth-rate function of 1 (or a constant) implies a problem whose time
requirement is constant and, therefore, independent of the problem’s size.

log2 N The time requirement for a logarithmic algorithm increases slowly as the
problem size increases. The binary search algorithm has this behavior.

N The time requirement for a linear algorithm increases directly with the size
of the problem.

N log2 N The time requirement increases more rapidly than a linear algorithm. Such
algorithms usually divide a problem into smaller problems that are each
solved separately.

2



B
ig

 O
 N

ot
at

io
nN2 The time requirement for a quadratic algorithm increases rapidly with the

size of the problem. Algorithms that use two nested loops are often quadratic.

N3 The time requirement for a cubic algorithm increases more rapidly with the
size of the problem than the time requirement for a quadratic algorithm.
Algorithms that use three nested loops are often cubic and are practical only
for small problems.

2N As the size of a problem increases, the time requirement for an exponential

algorithm usually increases too rapidly to be practical.

If algorithm A requires time that is proportional to function f and algorithm B requires time
that is proportional to a slower-growing function g, it is apparent that B will always be signif-
icantly more efficient than A for large enough problems. For large problems, the proportional
growth rate dominates all other factors in determining an algorithm’s efficiency.

Some properties of Big O notation help to simplify the analysis of an algorithm. You should
keep in mind the O(f(N)) means “is of order f(N)” or “has order f(N).” O is not a function.

1. You can ignore low order terms in an algorithm’s growth-rate function. For example,
and algorithm of O(N2 + 3N) is also of order O(N2).

2. You can ignore a multiplicative constant in the high-order term of an algorithm’s growth
rate function. An algorithm of O(4N) is of O(N).

3. O(f(N)) + O(g(N)) = O(f(N) + g(N)). You can combine growth-rate functions.

These properties imply that you only need an estimate of the time requirement to obtain an
algorithm’s growth rate; you do not need an exact statement of an algorithm’s time require-
ment, which is fortunate because deriving the exact time requirement is often difficult and
sometimes impossible.

Worst-case analysis. A particular algorithm might require different times to solve different
problems of the same size. For example, the time an algorithm requires to search N items
might depend on the nature of the items. Usually you consider the maximum amount of time
that an algorithm can require to solve a problem of size N – that is, the worst case. Although
worst-case analysis can produce a pessimistic time estimate, such an estimate does not mean
that your algorithm will always be slow. Instead, you have shown that the algorithm will
never be slower than your estimate. An algorithm’s worst case might happen rarely, if at all,
in practice.

Tightness. We want the ”tightest” big-O upper bound we can prove. If f(N) is O(Ni2), we
want to say so even though the statement f(N) is O(N3) is also technically true, but “weaker.“

Simplicity. We will generally regard f(N) as “simple” if it is a single term and the coefficient
of that term is 1. N2 is simple, 2N2 and N2 + N are not.

We want simple and tight bounds to describe the order of our algorithms.

3


