IEEE Floating Point Format

<table>
<thead>
<tr>
<th>S</th>
<th>Exponent</th>
<th>Mantissa (fraction)</th>
</tr>
</thead>
</table>

S - Sign 0 for positive, 1 for negative

Exponent - Power, base 2 - 8 bits for single, 11 for double

- 2^{8}, approx 0.87×10^{38} to 1.7×10^{38}, single
- 2^{11}, approx 4.79×10^{38} to 9.98×10^{38}, double

Mantissa - Fraction, base 2, radix point assumed to be to left of all the digits, 23 bits for single, 52 bits for double

Accuracy, single - one part in 2^{24}, one part in 16 million, 0.96×10^{-2}, or a little better than 7 digits

Accuracy, double - one part in 2^{53}, better than 16 digits

Example Floating Point Value

For the following very limited floating point representation:

<table>
<thead>
<tr>
<th>S</th>
<th>Exp</th>
<th>Mant</th>
</tr>
</thead>
</table>

The following values can be represented:

- -1.6, -0.8, 0.2, 1.6
Some Important Binary Values

$2^{10} = 1024$ or 1k, binary approximation of 1000
$2^{20} = 1048576$, or 1M, 1 meg, binary approx of 1 million
$2^{30} = 1G$, 1 gig, binary approx of 1 billion

$(2^{31} - 1) = 2147483647$, largest value that can be stored in a byte (signed)
$(2^{32} - 1) = 4294967295$, largest value that can be stored in 16 bits (signed)
$(2^{32} - 1) = 65535$, largest value that can be stored in 16 bits (unsigned)
$(2^{31} - 1) = 2G$, largest value that can be stored in 32 bits (signed)
$(2^{32} - 1) = 4G$, largest value that can be stored in 32 bits (unsigned)

C Simple Types

The C standard doesn't specify the internal representation that must be used for the simple data types. It says that an int should be the "usual" size of values used on a particular system, that short int should be no larger than int, and that long int should be no shorter than int. The actual limits are included in `<limits.h>` (or `<limits>`) and `<float.h>` (for `<float.h>`). Some typical values:

- `char` - either signed or unsigned
 `signed char` - 8 bit 2's complement, range -128 to $+127$
 `unsigned char` - 8 bit unsigned, range 0 to 255

- `int` - 32 bit 2's complement, range -2147483648 to 2147483647
 `unsigned int` - 32 bit unsigned, range 0 to 4294967295

- `short int` - 16 bit 2's complement, range -32768 to $+32767$
- `short unsigned int` - 16 bit unsigned, range 0 to 65535

- `long int` - 32 bit 2's complement, same as int
- `long unsigned int` - 32 bit unsigned, same as unsigned int

- `float` - IEEE floating point, range approx 1.17549×10^{-38} to 3.40282×10^{38}

- `double` - IEEE double, range approx 4.94067×10^{-324} to 1.79769×10^{308}