
CS210 - Programming Languages

Homework #5 - Spring 2024

Due on or before Sunday, April 14 at 11:59:59 PM

Tools such as lex (or flex) can be used to automatically generate a scanner for a given lan-
guage. The scanner generated by lex partitions the input into lexemes as per the specification
provided to lex. This specification describes the lexical structure of a grammar.

For some applications, nothing more is needed than a specification of the lexical structure of a
grammar. However, it is usually the case that an application needs to recognize sequences of
lexemes and perform specific actions based upon these sequences. Such applications require
knowledge regarding the phrase structure of the grammar that generates the language.

Tools such as yacc (or bison) can generate a parser that recognizes valid strings in a given lan-
guage generated by an input grammar. Thus yacc is referred to as a parser generator. The name
yacc is an acronym for Yet Another Compiler Compiler. A compiler compiler is a tool that is
used to build compilers. Yacc generates parsers for a class of grammars known as LALR(1).
The input to the parser generated by yacc is almost always the lexemes that are produced by
the scanner generated by lex. In fact, lex and yacc are so frequently used together that lots of
people forget that they can be used independently.

Yacc was first built in 1972 by Stephen C. Johnson. There are many, many references for yacc
and bison on the web, and if you’re interested in books “Lex & Yacc” by John R. Levine,
Tony Mason, and Doug Brown (O’Reilly and Associates, 1990) is widely held in high regard.
Yacc takes as input a grammar that you specify, and generates a parser that recognizes valid
“sentences” in that grammar.

The specification for yacc is provided in a file that by convention has .y as its extension. The
structure of the file containing the specification for yacc is very similar to the structure of the
file containing the specification for lex. This is because the file structure of lex was patterned
after the file structure of yacc. The general format for a yacc specification is:

declarations

%%

rules

%%

program segments

The declarations and program segments sections may be empty. The declarations sec-
tion contains declarations of the tokens used in the grammar, the types of values used by the
parser, and other miscellany. The declarations section may also contain a literal block of C
code (contained in %{ %} just like in a lex specification) that is copied into the top of the gen-
erated parser. The rules section contains the productions of the grammar for which yacc will
generate a parser. The productions in this section are presented in a form similar to BNF. The
program segments section contains C code that is copied verbatim into the generated parser
toward the end of the file.

As is the case with lex, when you use yacc the output is a file containing code in the C pro-
gramming language. The file that yacc generates is named y.tab.c by default. You can also
use yacc to generate a header file containing declarations and symbol type definitions that are
used by both lex and yacc by specifying the -d option when invoking yacc.

The Homework

On the course website you will find a project containing the files necessary to build a working
calculator using lex and yacc. For this homework you are to modify this working calculator
to add functionality as specified later in this document. The calculator project is composed of
the following files:

• Makefile

– This is the file that is used to build the project. You can build the project by just
typing make on the command line.

• calc.l

– This file contains the lex specification for the calculator project.

• calc.y

– This file contains the yacc specification for the calculator project.

• sym.h

– This file contains information describing the representation of symbols in the calcu-
lator language. Information contained in this file is used by both calc.l and calc.y.

If you download and build this project without modifying any files, you will be presented
with a working (albeit limited) calculator. The following is a session using the calculator after
it has been built:

calc

2/3

= 0.666667

a = 9 / 5

a

= 1.8

b = a + 2

b

= 3.8

c = (a + (b * 3))

c

= 13.2

#

In the example above, the bold text represents input from the user and text that does not ap-
pear in bold is the output from the calculator. You should download and build the calculator

and verify that it works as depicted above before you begin working on this assignment. To
terminate a session when running the calculator, simply type CTRL-D or whatever key combi-
nation represents EOF on your installation.

Your objective for this assignment is to add the following functionality to the existing calcula-
tor:

1: Zero Division Check

The existing calculator does not perform a check to ensure that division by 0 is prohibited.
Please modify your calculator to perform a check to ensure that division by 0 is not allowed.
If you perform a division by 0 in the existing calculator, your results will be as follows:

calc

4 / 0

= inf

a = 9 - (3 * 3)

a

= 0

4 / a

= inf

#

In order to earn full credit for this problem, you must modify your calculator so that it detects
division by 0, emits a message of the form ”divide by zero” when such an operation is detected,
and prohibits the operation from being performed. A session running a working calculator
that successfully performs this check is shown below:

calc

4 / 0

divide by zero

= 4

a = 9 - (3 * 3)

a

= 0

4 / a

divide by zero

= 4

#

2: Unlimited Number of Symbols

The existing calculator only allows the user to define at most 3 symbols. The names for these
symbols may be arbitrarily long, but there can be at most 3 defined. Please modify your
calculator so that it does not impose any limit on the number of symbols that may be in use
at any given time. There will of course be limitations imposed by an operating system, or the
amount of RAM available to the process hosting the calculator, etc.; these are expected and

you don’t really have any control over them. To earn full credit for this problem, you must
modify your calculator so that symbols are stored in a linked list or a hash table or some other
dynamic structure that places no practical upper bound on the number of symbols that can
be defined at any given time. Please note that for this homework you are expressly forbidden
from using the Standard Template Library (STL) container classes (e.g. <vector>) in any form.
Use of the STL container classes in any form on this assignment will result in the loss of at least
50% of the total possible points available for this assignment.

The following session shows the behavior of the existing calculator:

calc

width = 198.22

height = 1901.43

area = width * height

depth = 24.3

Too many symbols

#

In the session above, the calculator has detected that the user has attempted to use more than
3 symbols, so it emits the message ”Too many symbols” and immediately terminates. This
behavior is undesirable for many reasons.

A session running a working calculator that permits an unlimited number of symbols is shown
below:

calc

width = 198.22

height = 1901.43

area = width * height

depth = 24.3

volume = area * depth * 1.35

volume

= 1.23643e+07

...

Note that this calculator does not emit the ”Too many symbols” message and terminate.

3: Constant Symbols

All symbols in the existing calculator are readable and writable. It is often the case that prede-
fined constant symbols are used in calculations with the expectation that these constants may
not be overwritten. Please modify your calculator so that it starts up with predefined constant
symbols PI and PHI whose values cannot be modified. These constant symbols are expected
to be used in arbitrary expressions, but may not be overwritten.

A session running a working calculator that contains the predefined constants PI and PHI is
shown below:

calc

PI

= 3.14159

PHI

= 1.61803

r = 11.4

circlearea = PI * r * r

circlearea

= 408.281

height = 9.23

cylvol = circlearea * height

cylvol

= 3768.43

PI = 23

assign to const

PI

= 3.14159

#

Your calculator must define the constant symbols PI and PHI and ascribe to these symbols the
values 3.14159 and 1.61803 as shown above. Your calculator must then permit PI and PHI to
be used in any expression that doesn’t attempt to alter their values. If the user attempts to
change the value of PI and/or PHI, your calculator must emit the message “assign to const”
and prohibit the attempted alteration as shown above. Please note that your program must
not terminate if the user attempts to change the value of a constant symbol.

4: Symbol Inventory

In the existing calculator, a user must query the name of each symbol that is in use in order
to determine the value currently associated with that symbol. This can be a tedious and error-
prone process when a user wants to query the values of multiple symbols. You must modify
your calculator to allow the user to see the values of all symbols that are being used at any
given time. This command must list the values of both constant and mutable symbols. The
command for querying the values of all symbols is an expression containing just a question
mark. A session showing a working calculator that implements the symbol inventory com-
mand is shown below:

./calc

?

num-syms: 2

PHI => 1.61803

PI => 3.14159

a = PI / PHI * (PI / 2)

a

= 3.04988

b = a - PI

9 / 5

= 1.8

a

= 3.04988

b

= -0.0917121

?

num-syms: 4

PHI => 1.61803

PI => 3.14159

a => 3.04988

b => -0.0917121

c = b * (PHI + 1)

d = (((c / (a - PHI) * b) + 2.6 * PI * PI) * ((a + b + c) * PHI))

c

= -0.240105

d

= 112.922

?

num-syms: 6

PHI => 1.61803

PI => 3.14159

a => 3.04988

b => -0.0917121

c => -0.240105

d => 112.922

#

Your calculator must output all symbols in ASCII alphabetical order (aka ASCIIbetical order)
as shown above, ordered by the symbol name. Your calculator must format the output of the
symbol inventory command as shown above. The output of this command must contain a
string of the form “num-syms: N” where N is the number of symbols that are currently in use
(as shown above.) The output of this command must then list all symbols, each on a separate
line, prefixed by a single TAB character. The separator => must appear between the name
of the symbol and the value currently associated with that symbol, and a single space must
appear between the name of the symbol and the => separator, and between the => separator
and the current value of the symbol.

Your homework must be submitted as an uncompressed .tar archive containing no subdirec-
tories via cscheckin. When you have completed your homework, use tar to make an archive
of your project files, naming the archive “hw5.tar” (without quotes). Then submit it to your
instructor.

The work you submit for this homework must be entirely your own. Your homework must
build and run on the course server. If your homework does not build on the course server
with the Makefile that you have provided, at least 50% of the total score for this homework
will be deducted. You may not use the STL in any form for this assignment. You should have
already learned how to design and implement trees and lists in previous courses, so use that
knowledge to complete this assignment.

