1. Start with the grammar G6 from your textbook, repeated here:

 \[
 \begin{align*}
 \text{<exp>} & ::= \text{<exp>} + \text{<mulexp>} \mid \text{<mulexp>} \\
 \text{<mulexp>} & ::= \text{<mulexp>} \ast \text{<rootexp>} \mid \text{<rootexp>} \\
 \text{<rootexp>} & ::= (\text{<exp>}) \mid \text{a} \mid \text{b} \mid \text{c}
 \end{align*}
 \]

 Please modify the grammar G6 in the following ways:

 - Add subtraction and division operators (- and /) with the customary precedence and associativity.
 - Then add a left-associative operator % between + and * in precedence.
 - Then add a right-associative operator = at lower precedence than any of the other operators.

 Please note that you need not show the intermediate grammars produced as a result of each modification specified above; just provide the final grammar that is the result of modifying G6 as specified.

2. Prove that each of the following grammars is ambiguous:

 Grammar H2a:

 \[
 \begin{align*}
 \text{<person>} & ::= \text{<woman>} \mid \text{<man>} \\
 \text{<woman>} & ::= \text{wilma} \mid \text{betty} \mid \text{<empty>} \\
 \text{<man>} & ::= \text{fred} \mid \text{barney} \mid \text{<empty>}
 \end{align*}
 \]

 Grammar H2b:

 \[
 \begin{align*}
 \text{<S>} & ::= \text{<S>} \text{<S>} \mid (\text{<S>}) \mid ()
 \end{align*}
 \]