The ATmega328

Instruction Set Architecture

- ISA: All of the programmer-visible components and operations of the computer
 - memory organization
 - address space -- how may locations can be addressed?
 - addressibility -- how many bits per location?
 - register set
 - how many? what size? how are they used?
 - instruction set
 - opcodes
 - data types
 - addressing modes
- ISA provides all information needed for someone who wants to write a program in machine language (or translate from a highlevel language to machine language).

Memory and Registers

- Program Memory
 - address space: 32K (K=1024) locations (15-bit addresses)
 - addressability: 16 bits
- Data Memory
 - address space: 2K (K=1024) locations (11-bit addresses)
 - addressability: 8 bits
- Registers
 - temporary storage, accessed in a single machine cycle
 - accessing memory generally takes longer than a single cycle
 - 32 general-purpose registers: R0 R31
 - each 8 bits wide
 - how many bits to uniquely identify a register?
 - other registers
 - not directly addressable, but used by (and affected by) instructions
 - PC, IR , etc.

Instruction Set

• 30 Opcodes

- ALU instructions: ADC, ADD, AND, NOP, CP, EOR, OR, MOV
- *Immediate* instructions: CPI, ORI, ANDI, LDI
- Unary Logical instructions: COM, NEG, ASR, LSR
- Load/Store instructions: LDS, STS
- Branch instructions: BRBS, BRBC (aka BRZS, BRZC, BRCS, BRCC)
 - Conditional branch based upon SREG bits ("Condition Codes")
- Input/Output instructions: IN, OUT
- Call/Jump instructions: CALL, JMP
- Return instructions: RET, RETI
- Stack instructions: PUSH, POP
- Relative Jump instructions: RCALL, RJMP
- Addressing Modes
 - Specify how the location of an operand is resolved
 - non-memory addresses: *immediate, register direct, etc.*
 - memory addresses: data direct, data indirect, data indirect with displacement, etc

Control Instructions

- Used to alter the sequence of instructions (by changing the PC)
- Conditional Branch
 - branch is *taken* if a specified condition is true (BRBC, BRBS)
 - BRCC/BRCS is alias of BRBC/BRBS with field "sss" being the SREG bit index of the condition code
 - signed offset is added to PC to yield new PC
 - else, the branch is *not taken*
 - PC is not changed, points to the next sequential instruction
- Unconditional Branch (or Jump or Call)
 - JMP, RJMP, CALL, RCALL
 - Relative forms add signed offset to PC to yield new PC
 - always change the PC (there is no condition)

Condition Codes

- Used by Conditional Branch instructions to determine whether a branch should be taken
- Located in the Status Register (SREG)
 - Indexed by bit position
 - C = 0, Z = 1, ... I = 7
 - The sss field of BRBC/BRBS specifies which bit is tested
- Are changed by certain instructions
 - One instruction can change many CC bits
 - Change depends upon
 - logic of the instruction
 - operands to the instruction
 - state of the datapath

Review the AVR Instruction-Set Reference