Assembly Language

Assembly Language: Human Readable
Machine Language

Computers like ones and zeroes...
0001110010000110

Humans like symboils...
ADD RO,R17 ; i1ncrement 1index reg.

An assembler is a program that translates symbols for
Instructions into actual machine instructions.

*|SA-specific

*Close relationship between symbols and insn-set

* Mnemonics for opcodes

*|_abels for memory locations

* Additional operations (directives) for various tasks like

allocating and initializing storage

Example Assembly Language Program

; This program multiplies the value in r17 (23) by the value in r16 (6)
; and places the result in r0O. It will work on the atmega328P.
jmp entry

.org 0x100
entry:
Idi r16, 6
Idi r17, 23
Idi r18, -1
eor r0, r0
loop:
add r0, r17
add rlo, rl8
brbc 1, loop
sink:

rmp sink

AVR Assembly Language Syntax

Each line of a program is one of the following:
— an instruction

— an assember directive (or pseudo-op)

—a comment

Whitespace (between symbols) and case are
ignhored.

Comments (beginning with “;”) are also ignored.

An instruction has the following format:
LABEL OPCODE OPERANDS ; COMMENTS

; :) |

optional mandatory

Opcodes and Operands

* Opcodes

— reserved symbols that correspond to AVR
Instructions

e ex: add, eor, 1di, brbc, ...

 Operands

— registers -- specified by Rn, where n is the register
number

— numbers - Hexadecimal indicated by Ox or $

— label -- symbolic name of memory location

— Operands separated by commas

— number, order, and type correspond to instruction

format
* ex.
add ri1,r3
com ril

1di r31,0xff
brbc 1, loop

Labels and Comments

e Label

— placed at the beginning of the line

— assigns a symbolic name to the address
corresponding to line

* ex:
loop: add ri,r3

brvc loop

e Comment
— anything after a semicolon is a comment
— ighored by assembler

— used by humans to document/understand
programs

— tips for useful comments:
* Do what you feel is useful

Assembler Directives

 Pseudo-operations
— do not refer to operations executed by program
— used by the assembler
— look like instructions, but the “opcode” starts with dot
— assembler-specific

Opcode Operand Meaning

.ORG address starting addr of next insn in PMEM

.BYTE expressions | Place bytes from exprs in code

.SET symbol,expr | Set value of symbol to expression

.FILL Repeat,size, |allocate one word, initialize with
value value n

.SECTION |sectionname | Place following code into section

sectionname

Assembly Process

* Convert assembly language file (.asm)
Into an executable file (.hex) for the AVR.

a a

Assembly
e 1st Pass — 2nd Pass —>Executable

Program \ imagis

Symbol
Table

* First Pass:
— scan program file

— find all labels and calculate the corresponding
addresses;

this is called the symbol table
 Second Pass:

— convert instructions to machine language,
using information from symbol table

First Pass: Constructing the Symbol
Table

. Initialize the location counter (LC) which
keeps track of the address of the current
instruction.

— On AVR, LC is initialized to 0.

. For each non-empty line in the program:

a)lIf line contains a label, add label and LC to
symbol table.

b)Increment LC.

- NOTE: If statement is .BYTE or .FILL,
increment LC by the number of words allocated.

. Stop when tend of file is reached.

NOTE: A line that contains only a comment is considered an empty line.

Second Pass: Generating Machine
Language

* For each executable assembly language
statement, generate the corresponding
machine language instruction.

— |If operand is a label, look up the address from
the symbol table.

* Potential problems:

— Improper number or type of arguments

e ex: rcallr3
1di ro, oxff
add r3,r3,128

— Immediate argument too large
e ex: orl r1,0xdeadbeef

Linking and Loading

* Loading is the process of copying an executable
image Into memory.

— more sophisticated loaders are able to relocate images
to fit into available memory

— must readjust branch targets, load/store addresses

 Linking is the process of resolving symbols between
Independent object files.

— suppose we define a symbol in one module,
and want to use it in another

— some notation, such as .extern, is used to tell the
assembler that a symbol is defined in another module

— linker will search symbol tables of other modules to

resolve symbols and complete code generation before
loading

Building An Assembly Language
Program Using GNU Toolchain

avr-as - mmcu=atmega328p myfile.asm
— produces a.out

avr-ld -m avr5 -o myfile.elf a.out

— produces .elf file from a.out

avr-objcopy -O ihex -R .eeprom
myfile.elf myfile.hex

— produces Intel .hex (ROM image) from .elf
Idino -P myfile.hex

— Programs the atmega328p on Arduino with
contents of myfile.hex

	PowerPoint Presentation
	Assembly Language: Human Readable Machine Language
	Example Assembly Language Program
	AVR Assembly Language Syntax
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

