
Assembly Language

Assembly Language: Human Readable
Machine Language

ADD R0,R17 ; increment index reg.

0001110010000110

Computers like ones and zeroes…

Humans like symbols…

An assembler is a program that translates symbols for
instructions into actual machine instructions.

•ISA-specific
•Close relationship between symbols and insn-set
•Mnemonics for opcodes
•Labels for memory locations
•Additional operations (directives) for various tasks like
allocating and initializing storage

Example Assembly Language Program
;This program multiplies the value in r17 (23) by the value in r16 (6)
; and places the result in r0. It will work on the atmega328P.
jmp entry

.org 0x100
entry:

ldi r16, 6
ldi r17, 23
ldi r18, -1
eor r0, r0

loop:
add r0, r17
add r16, r18
brbc 1, loop

sink:
rjmp sink

AVR Assembly Language Syntax
• Each line of a program is one of the following:

– an instruction
– an assember directive (or pseudo-op)
– a comment

• Whitespace (between symbols) and case are
ignored.

• Comments (beginning with “;”) are also ignored.

• An instruction has the following format:
LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory

Opcodes and Operands
• Opcodes

– reserved symbols that correspond to AVR
instructions

• ex: add, eor, ldi, brbc, …

• Operands
– registers -- specified by Rn, where n is the register

number
– numbers – Hexadecimal indicated by 0x or $
– label -- symbolic name of memory location
– Operands separated by commas
– number, order, and type correspond to instruction

format
• ex:
add r1,r3
com r1
ldi r31,0xff
brbc 1,loop

Labels and Comments

• Label
– placed at the beginning of the line
– assigns a symbolic name to the address

corresponding to line
• ex:

loop: add r1,r3
 brvc loop

• Comment
– anything after a semicolon is a comment
– ignored by assembler
– used by humans to document/understand

programs
– tips for useful comments:

• Do what you feel is useful

Assembler Directives
• Pseudo-operations

– do not refer to operations executed by program
– used by the assembler
– look like instructions, but the “opcode” starts with dot
– assembler-specific

Opcode Operand Meaning

.ORG address starting addr of next insn in PMEM

.BYTE expressions Place bytes from exprs in code

.SET symbol,expr Set value of symbol to expression

.FILL Repeat,size,
value

allocate one word, initialize with
value n

.SECTION sectionname Place following code into section
sectionname

Assembly Process
• Convert assembly language file (.asm)

into an executable file (.hex) for the AVR.

• First Pass:
– scan program file
– find all labels and calculate the corresponding

addresses;
this is called the symbol table

• Second Pass:
– convert instructions to machine language,

using information from symbol table

First Pass: Constructing the Symbol
Table

1. Initialize the location counter (LC) which
keeps track of the address of the current
instruction.
– On AVR, LC is initialized to 0.

2. For each non-empty line in the program:
a) If line contains a label, add label and LC to

symbol table.
b) Increment LC.

– NOTE: If statement is .BYTE or .FILL,
increment LC by the number of words allocated.

3. Stop when tend of file is reached.
• NOTE: A line that contains only a comment is considered an empty line.

Second Pass: Generating Machine
Language

• For each executable assembly language
statement, generate the corresponding
machine language instruction.
– If operand is a label, look up the address from

the symbol table.

• Potential problems:
– Improper number or type of arguments

• ex: rcallr3
ldi r0,0xff
add r3,r3,128

– Immediate argument too large
• ex: ori r1,0xdeadbeef

Linking and Loading

• Loading is the process of copying an executable
image into memory.
– more sophisticated loaders are able to relocate images

to fit into available memory
– must readjust branch targets, load/store addresses

• Linking is the process of resolving symbols between
independent object files.
– suppose we define a symbol in one module,

and want to use it in another
– some notation, such as .extern, is used to tell the

assembler that a symbol is defined in another module
– linker will search symbol tables of other modules to

resolve symbols and complete code generation before
loading

Building An Assembly Language
Program Using GNU Toolchain

• avr-as –mmcu=atmega328p myfile.asm
– produces a.out

• avr-ld –m avr5 –o myfile.elf a.out
– produces .elf file from a.out

• avr-objcopy –O ihex –R .eeprom
myfile.elf myfile.hex
– produces Intel .hex (ROM image) from .elf

• ldino –P myfile.hex
– Programs the atmega328p on Arduino with

contents of myfile.hex

	PowerPoint Presentation
	Assembly Language: Human Readable Machine Language
	Example Assembly Language Program
	AVR Assembly Language Syntax
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

