
Architecture Models

The Stored Program Computer

• 1943: ENIAC
– Presper Eckert and John Mauchly -- first general electronic computer.

(or was it John V. Atanasoff in 1939?)
– Hard-wired program -- settings of dials and switches.

• 1944: Beginnings of EDVAC
– among other improvements, includes program stored in memory

• 1945: John von Neumann
– wrote a report on the stored program concept,

known as the First Draft of a Report on EDVAC

• The basic structure proposed in the draft became known
as the “von Neumann machine” (or model).
– a memory, containing instructions and data
– a processing unit, for performing arithmetic and logical operations
– a control unit, for interpreting instructions

• Devised circa 1947
• Refinement of von Neumann Model

– contains separate memories for data and program storage

– Program and data stored in same memory in von Neumann Model
– Advantages? Disadvantages?

• Conceptually the models are very similar
- synchronous, sequential
- programs interpreted by the Control Unit

Harvard Model

Von Neumann Model
M E M O R Y

C O N T R O L U N I T

M A R M D R

I R

P R O C E S S I N G U N I T

A L U T E M P

P C

O U T P U T
M o n i t o r
P r i n t e r
L E D
D i s k

I N P U T
K e y b o a r d
M o u s e
S c a n n e r
D i s k

Harvard Model

M E M O R Y

C O N T R O L U N I T

M A R M D R

I R

P R O C E S S I N G U N I T

A L U T E M P

P C

O U T P U T
M o n i t o r
P r i n t e r
L E D
D i s k

I N P U T
K e y b o a r d
M o u s e
S c a n n e r
D i s k

PMEM DMEM

MAR MDR MAR MDR

MEMORY
PMEM is

effectively
read-only

Remembering Memory

• 2k x m array of stored bits
• Address

– unique (k-bit) identifier of location

• Contents
– m-bit value stored in location

• Basic Operations:
• LOAD

– read a value from a memory location

• STORE
– write a value to a memory location

...

0000
0001
0010
0011
0100
0101
0110

1101
1110
1111

00101101

10100010

Interface to Memory
How does processing unit get data to/from
memory?
•MAR: Memory Address Register
•MDR: Memory Data Register

•To LOAD a location (A):
1. Write the address (A) into the MAR.
2. Send a “read” signal to the memory.
3. Read the data from MDR.

•To STORE a value (X) to a location (A):
1. Write the data (X) to the MDR.
2. Write the address (A) into the MAR.
3. Send a “write” signal to the memory.

M E M O R Y

M A R M D R

Processing Unit
• Functional Units

– ALU = Arithmetic and Logic Unit
– could have many functional units.

some of them special-purpose
(multiply, square root, …)

• Registers
– Small, temporary storage
– Operands and results of functional units
– atmega328P has 32 registers (R0, …, R31), each 8

bits wide

• Data Word Size
– number of bits normally processed by ALU in one

instruction
– also width of registers
– atmega328P is 8 bits

P R O C E S S I N G U N I T

A L U T E M P

Input and Output

• Devices for getting data into and
out of computer memory

• Each device has its own interface,
usually a set of registers like the
memory’s MAR and MDR

• Some devices provide both input
and output
– disk, network

• Program that controls access to a
device is usually called a driver.

I N P U T
K e y b o a r d
M o u s e
S c a n n e r
D i s k

O U T P U T
M o n i t o r
P r i n t e r
L E D
D i s k

Control Unit
• Orchestrates execution of the program

• Instruction Register (IR) contains the current
instruction.

• Program Counter (PC) contains the address
of the next instruction to be executed.

• Control unit:
– reads an instruction from memory

• the instruction’s address is in the PC

– interprets the instruction, generating signals
that tell the other components what to do

• an instruction may take many machine cycles to complete

C O N T R O L U N I T

I RP C

Instruction Processing

Decode instructionDecode instruction

Evaluate addressEvaluate address

Fetch operands from memoryFetch operands from memory

Execute operationExecute operation

Store resultStore result

Fetch instruction from memoryFetch instruction from memory

About Instructions

• The instruction is the fundamental unit of work.
• An Instruction specifies two things:

– opcode: operation to be performed
– operands: data/locations to be used for operation

• An instruction is encoded as a sequence of bits.
(Just like data!) (Oh Noes!?)
– Often, but not always, instructions have a fixed length,

such as 16 or 32 bits.
– Control unit interprets an instruction:

generates sequence of control signals to carry out operation.
– Operation is either executed completely, or not at all.

• A computer’s instructions and their formats is known
as its
Instruction Set Architecture (ISA).

AVR add Instruction

• Instruction Format

0 0 0 0 1 1 r d d d d d r r r r

15 0

• Syntax: add Rd, Rr 0 <= d <= 31, 0 <= r <= 31

• Operation: Rd := Rd + Rr
• Examples

add r1, r3 ; add r3 to r1… bits are 0000110000010011
add r8, r8 ; add r8 to itself… bits are 0000110010001000

AVR rjmp Instruction

• Instruction Format

1 1 0 0 k k k k k k k k k k k k

15 0

• Syntax: rjmp k -2K <= k < 2K

• Operation: PC := PC + k (PC is already
incremented)

• Example
rjmp DoIt ; jmp to label DoIt… bits are 1100000011111111
…

.org 0x100
DoIt:

 add r8, r8 ; add r8 to itself… bits are 0000110010001000

Instruction Processing: FETCH

• Load next instruction (at address stored in PC)
from memory into Instruction Register (IR).

– Copy contents of PC into PMAR.

– Send “read” signal to memory.

– Copy contents of PMDR into IR.

• Then increment PC, so that it points to
the next instruction in sequence.
– PC becomes PC+1.

EAEA

OPOP

EXEX

SS

FF

DD

Instruction Processing: Decode

• First identify the opcode.
– For ADD insn, this is bits [15:10]

• Depending on opcode, identify other
operands
from the remaining bits.
– Example:

• for ADD insn, need r and d operands

EAEA

OPOP

EXEX

SS

FF

DD

Instruction Processing: Evaluate
Address

• For instructions that require memory
access,
compute address used for access.

• Example:
– Get address of jump destination (AVR

RJMP insn)

EAEA

OPOP

EXEX

SS

FF

DD

Instruction Processing: Fetch
Operands

• Obtain source operands needed to
perform operation.

• Examples:
– load data from memory (LD)
– read data from register file (ADD)

EAEA

OPOP

EXEX

SS

FF

DD

Instruction Processing: Execute

• Perform the operation,
using the source operands.

• Examples:
– send operands to ALU and assert ADD

signal
– do nothing (e.g., for loads and stores)

EAEA

OPOP

EXEX

SS

FF

DD

Instruction Processing: Store
Result

• Write results to destination (register or
memory)
– Also known as “writeback”

• Examples:
– result of ADD is placed in destination

register
– result of memory load is placed in

destination register
– for store instruction, data is stored to

memory
• write address to MAR, data to MDR
• assert WRITE signal to memory

EAEA

OPOP

EXEX

SS

FF

DD

Changing the Sequence of Instructions

In the FETCH phase, the Program Counter is
incremented by 1.

But what if we don’t want to always execute the
instruction that follows this one?

– examples: loop, if-then, function call

Need special instructions that change the contents of
the PC.

These are called control instructions.
– jumps are unconditional -- they always change the PC
– branches are conditional -- they change the PC only if

some condition is true (e.g., the result of an ADD is zero)
• Redirecting the flow of control or “control-flow redirection”.

AVR rjmp Instruction

• Instruction Format

1 1 0 0 k k k k k k k k k k k k

15 0

• Syntax: rjmp k -2K <= k < 2K

• Operation: PC := PC + k (PC is already
incremented)

• This instruction loads the PC with the value
computed above…
IT DOES NOT MATTER WHETHER OR NOT THE VALUE
CAME FROM A VALID INSTRUCTION OR RESOLVES TO
A VALID INSTRUCTION

Instruction Processing Summary

• Instructions look just like data -- it’s all
interpretation.

• Three basic kinds of instructions:
– computational instructions (ADD, AND, …)
– data movement instructions (LD, ST, …)
– control instructions (JMP, BRxx, …)

• Six basic phases of instruction processing:
• F  D  EA  OP  EX  S

– not all phases are needed by every instruction
– phases may take variable number of machine cycles

Control Unit State Diagram
• The control unit is a state machine. Here is part of a

simplified state diagram for the AVR:

Clarification

Every piece of software that you have
ever run or probably ever will run on
every computing machine that you

have ever used or probably ever will
use

IS EXECUTED USING THIS METHOD

Problems?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

