Bits, Data Types, and Operations

How Do We Represent Data In A Computer?

At the lowest level, a computer is an electronic machine. works by controlling the flow of electrons

Easy to recognize two conditions:

- 1. presence of a voltage we'll call this state "1"
- 2. absence of a voltage we'll call this state "0"

Could base state on *value* of voltage, but control and detection circuits would be more complex.

compare turning on a light switch to measuring or regulating voltage

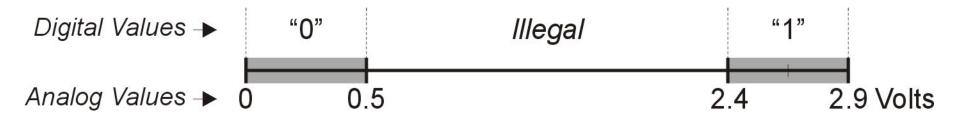
Computer Is A Binary Digital System

Digital system:

• finite number of symbols

Binary (base two) system:

has two states: 0 and 1



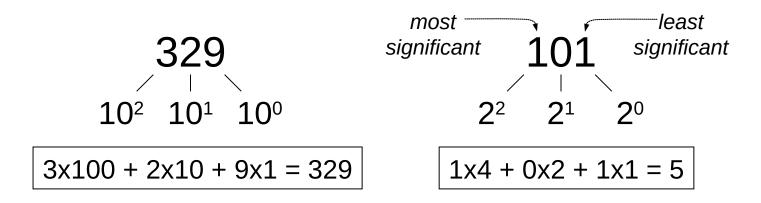
- Basic unit of information is the *binary digit*, or *bit*.
- Values with more than two states require multiple bits.
 - A collection of two bits has four possible states: 00, 01, 10, 11
 - A collection of three bits has eight possible states:
 000, 001, 010, 011, 100, 101, 110, 111
 - A collection of n bits has 2^n possible states.

What Kinds of Data Do We Need To Represent?

- Numbers signed, unsigned, integers, floating point, complex, rational, irrational, …
- Text characters, strings, ...
- Images pixels, colors, shapes, …
- Sound
- Logical true, false
- Instructions
- ...
- Data type:
 - *representation* and *operations* within the computer
- We'll start with numbers...

Unsigned Integers

- Non-positional notation
 - could represent a number ("5") with a string of ones ("11111")
 - problems?
- Weighted positional notation
 - like decimal numbers: "329"
 - "3" is worth 300, because of its position, while "9" is only worth 9



Unsigned Integers (cont.)

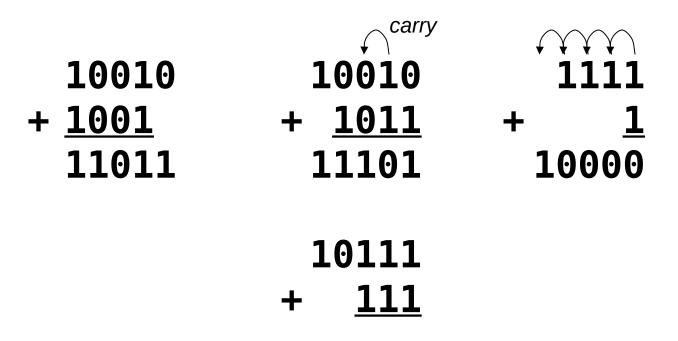
An *n*-bit unsigned integer represents 2ⁿ values: from 0 to 2ⁿ-1.

2 ²	2 ¹	2 ⁰	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Unsigned Binary Arithmetic

Base-2 addition – just like base-10!

- add from right to left, propagating carry



Subtraction, multiplication, division,...

Signed Integers

- With n bits, we have 2ⁿ distinct values.
 - assign about half to positive integers (1 through $2^{n-1}-1$)
 - and about half to negative (- 2^{n-1} -1 through -1)
 - that leaves two values: one for 0, and one extra
- Positive integers
 - just like unsigned zero in most significant (MS) bit
 00101 = 5
- Negative integers
 - sign-magnitude set MS bit to show negative, other bits are the same as unsigned
 10101 = -5
 - one's complement flip every bit to represent negative
 11010 = -5
 - in either case, MS bit indicates sign: 0=positive, 1=negative

Two's Complement

- Problems with sign-magnitude and 1's complement
 - two representations of zero (+0 and -0)
 - arithmetic circuits are complex
 - How to add two sign-magnitude numbers?

- e.g., try 2 + (-3)

• How to add to one's complement numbers?

- e.g., try 4 + (-3)

- *Two's complement* representation developed to make circuits easy for arithmetic.
 - for each positive number (X), assign value to its negative (-X), such that X + (-X) = 0 with "normal" addition, ignoring carry out

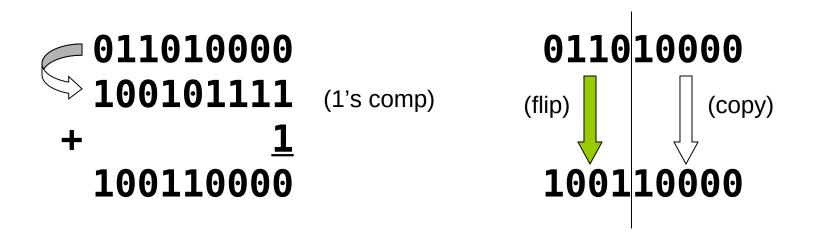
	00101	(5)	01001	(9)
÷	<u>11011</u>	(-5)	+	(-9)
	00000	(0)	00000	(0)

Two's Complement Representation

- If number is positive or zero,
 - normal binary representation, zeroes in upper bit(s)
- If number is negative,
 - start with positive number
 - flip every bit (i.e., take the one's complement)
 - then add one

Two's Complement Shortcut

- To take the two's complement of a number:
 - copy bits from right to left until (and including) the first "1"
 - flip remaining bits to the left



Two's Complement Signed Integers

- MS bit is sign bit it has weight -2^{n-1} .
- Range of an n-bit number: -2^{n-1} through $2^{n-1} 1$.
 - The most negative number (-2^{n-1}) has no positive counterpart.

-2 ³	2 ²	2 ¹	2 ⁰		-2 ³	2 ²	21	2°	
0	0	0	0	0	1	0	0	0	-8
0	0	0	1	1	1	0	0	1	-7
0	0	1	0	2	1	0	1	0	-6
0	0	1	1	3	1	0	1	1	-5
0	1	0	0	4	1	1	0	0	-4
0	1	0	1	5	1	1	0	1	-3
0	1	1	0	6	1	1	1	0	-2
0	1	1	1	7	1	1	1	1	-1

Converting Binary (2's C) to Decimal

- If leading bit is one, take two's complement to get a positive number.
- Add powers of 2 that have "1" in the corresponding bit positions.
- If original number was negative, add a minus sign.

$$X = 01101000_{two}$$

= 2⁶+2⁵+2³ = 64+32+8
= 104_{ten}

 2ⁿ

n

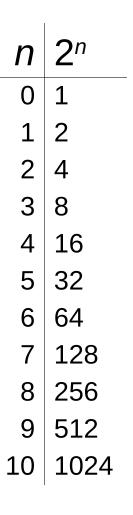
*Assuming 8-bit 2's complement numbers.

More Examples

$$X = 00100111_{two}$$

= 2⁵+2²+2¹+2⁰ = 32+4+2+1
= 39_{ten}
$$X = 11100110_{two}$$

-X = 00011010
= 2⁴+2³+2¹ = 16+8+2



*Assuming 8-bit 2's complement numbers.

 $= 26_{ten}$ $X = -26_{ten}$

Converting Decimal To Binary (2's C)

First Method: *Division*

- 1. Find magnitude of decimal number. (Always positive.)
- 2. Divide by two remainder is least significant bit.
- 3. Keep dividing by two until answer is zero, writing remainders from right to left.
- 4. Prepend a zero as the MS bit; if original number was negative, take two's complement.

$X = 104_{ten}$	104/2 = 52 r0	bit 0
	52/2 = 26 r0	bit 1
	26/2 = 13 r0	bit 2
	13/2 = 6 r1	bit 3
	6/2 = 3 r0	bit 4
	3/2 = 1 r1	bit 5
$X = 01101000_{two}$	1/2 = 0 r1	bit 6

Converting Decimal To Binary (2's C)						
Second Method: Subtract Powers of Two	n	2 ⁿ				
1. Find magnitude of decimal number.	0	1				
2. Subtract largest power of two less than or equal to number.	1	2				
3. Put a one in the corresponding bit position.	2	4				
4. Keep subtracting until result is zero.	3	8				
5. Append a zero as MS bit; if original was negative, take two's	4	16				
complement.	5	32				
	6	64				
	7	128				
	8	256				
	9	512				
$X = 104_{ten}$ 104 - 64 = 40 bit 6	10	1024				
40 - 32 = 8 bit 5						
8 - 8 = 0 bit 3						
$X = 01101000_{two}$						

Operations: Arithmetic and Logical

- Recall: a data type includes *representation* and *operations*.
- We now have a good representation for signed integers, so let's look at some arithmetic operations:
 - Addition
 - Subtraction
 - Sign Extension
- We'll also look at overflow conditions for addition.
- Multiplication, division, etc., can be built from these basic operations.
- Logical operations are also useful:
 - AND
 - OR
 - NOT

Addition

- As we've discussed, 2's complement addition is just binary addition.
 - assume all integers have the same number of bits
 - ignore carry out
 - for now, assume that sum fits in n-bit 2's complement representation

01101000 (104) 1110110 (-10) + 1110000 (-16) + (-9) 01011000 (98) (-19)

*Assuming 8-bit 2's complement numbers.

Subtraction

- Negate subtrahend (2nd no.) and add.
 - assume all integers have the same number of bits
 - ignore carry out
 - for now, assume that difference fits in n-bit 2's complement representation

	01101000	(104)	11110110	(-10)
-	<u>00010000</u>	(16)	-	(-9)
	01101000	(104)	11110110	(-10)
+	<u>11110000</u>	(-16)	+	(9)
	01011000	(88)		(-1)

*Assuming 8-bit 2's complement numbers.

Sign Extension

To add two numbers, we must represent them with the same number of bits... but...

If we just pad with zeroes on the left we have a problem:

<u>4-bit</u>	<u>8-bit</u>	
0100 (4)	00000100	(still 4)
1100 (-4)	00001100	(12, not -4)

Instead, replicate the MS bit (sign bit) to fill the bits:

<u>4-bit</u>	<u>8-bit</u>	
0100 (4)	00000100	(still 4)
1100 (-4)	11111100	(still -4)

Overflow

 If operands are too big, then sum cannot be represented as an n-bit 2's complement number.

01000 (8)	11000	(-8)
+ <u>01001</u> (9)	+ <u>10111</u>	(-9)
10001 (-15)	01111	(+15)

We have overflow if:

- signs of both operands are the same, and
- sign of sum is different.
- Another test -- easy for hardware:
 - carry into MS bit does not equal carry out

Logical Operations

- Operations on logical TRUE or FALSE
 - two states -- takes one bit to represent: TRUE=1, FALSE=0

А	В	A AND B	А	В	A OR B	A	NOT A
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1	'	
1	1	1	1	1	1		

View an n-bit number as a collection of n logical values
 Operation is applied to each bit independently

Examples of Logical Operations

- AND
 - useful for clearing bits
 - AND with zero = 0
 - AND with one = no change
- OR
 - useful for setting bits
 - OR with zero = no change
 - OR with one = 1

- 11000101 AND <u>00001111</u> 00000101
 - 11000101 OR <u>00001111</u> 11001111

- NOT
 - unary operation -- one argument
 - flips every bit

NOT <u>11000101</u> 00111010

Hexadecimal Notation

- It is often convenient to write binary (base 2) numbers as hexadecimal (base 16) numbers instead.
 - fewer digits -- four bits per hex digit
 - less error prone -- easy to corrupt long string of 1s and 0s

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	А	10
0011	3	3	1011	В	11
0100	4	4	1100	С	12
0101	5	5	1101	D	13
0110	6	6	1110	Е	14
0111	7	7	1111	F	15

Converting From Binary To Hexadecimal

- Every four bits is a single hex digit.
 - start grouping from right-hand side

This is not a new machine representation, just a convenient way to write the number.

Octal Notation

- This is an alternate notation for writing binary (base 2) numbers as octal (base 8) numbers instead.
 - fewer digits -- three bits per octal digit
 - less error prone -- easy to corrupt long string of 1s and 0s

Binary	Octal	Decimal	Binary	Octal	Decimal
0000	0	0	1000	10	8
0001	1	1	1001	11	9
0010	2	2	1010	12	10
0011	3	3	1011	13	11
0100	4	4	1100	14	12
0101	5	5	1101	15	13
0110	6	6	1110	16	14
0111	7	7	1111	17	15

Fractions: Fixed-Point

- How can we represent fractions?
 - Use a "binary point" to separate positive from negative powers of two -- just like "decimal point."
 - 2's comp addition and subtraction still work.
 - if binary points are aligned



No new operations -- same as integer arithmetic.

Very Large or Small: Floating-Point

- Large values: 6.023 x 10²³ -- requires 79 bits
- Small values: 6.626 x 10-34 -- requires >110 bits
- Use equivalent of "scientific notation": F x 2^E
 Need to represent F (*fraction*), E (*exponent*), and sign.
 IEEE 754 Floating-Point Standard (32-bits):

 $N = (-1)^{S} \times 1.$ fraction $\times 2^{exponent-127}$, $1 \le exponent \le 254$ $N = (-1)^{S} \times 0.$ fraction $\times 2^{-126}$, exponent =0

Floating-Point Example

Single-precision IEEE floating point number:

1 01111110 1000000000000000000000000

sign exponent

fraction

- Sign is 1 means number is negative.
- Exponent field is 01111110 = 126 (decimal).
- Fraction is 0.100000000000... = 0.5 (decimal).
- Value = $-1.5 \times 2^{(126-127)} = -1.5 \times 2^{-1} = -0.75$.

Text: ASCII Characters

- ASCII: Maps 128 characters to 7-bit code.
 - both printable and non-printable (ESC, DEL, ...) characters

00	nul	10	dle	20	sp	30	0	40	@	50	Ρ	60	•	70	р
01	soh	11	dc1	21	1	31	1	41	Α	51	Q	61	a	71	q
02	stx	12	dc2	22		32	2	42	В	52	R	62	b	72	r
03	etx	13	dc3	23	#	33	3	43	С	53	S	63	С	73	S
04	eot	14	dc4	24	\$	34	4	44	D	54	Т	64	d	74	t
05	enq	15	nak	25	%	35	5	45	Е	55	U	65	е	75	u
06	ack	16	syn	26	&	36	6	46	F	56	V	66	f	76	V
07	bel	17	etb	27	1	37	7	47	G	57	W	67	g	77	W
08	bs	18	can	28	(38	8	48	н	58	Χ	68	h	78	X
09	ht	19	em	29)	39	9	49	I	59	Υ	69	i	79	У
0a	nl	1a	sub	2a	*	3a	1	4a	J	5a	Ζ	6a	j	7a	Ζ
0b	vt	1b	esc	2b	+	3b	;	4b	Κ	5b	Γ	6b	k	7b	{
0c	np	1c	fs	2c	,	3c	<	4c	L	5c	Ν	6C	ι	7c	
0d	cr	1d	gs	2d	-	3d	=	4d	Μ	5d]	6d	m	7d	}
0e	SO	1e	rs	2e		3e	>	4e	Ν	5e	Λ	6e	n	7e	~
0f	si	1f	us	2f	/	3f	?	4f	0	5f	_	6f	0	7f	del

Properties of ASCII Characters

- What is relationship between a decimal digit ('0', '1', ...) and its ASCII code?
- What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?
- Given two ASCII characters, how do we tell which comes first in alphabetical order?
- Are 128 characters enough? (http://www.unicode.org/)

No new operations -- integer arithmetic and logic.

Other Data Types

- Text strings
 - sequence of characters, terminated with NULL (0)
 - typically, no hardware support
- Image
 - array of pixels
 - monochrome: one bit (1/0 = black/white)
 - color: red, green, blue (RGB) components (e.g., 8 bits each)
 - other properties: transparency
 - hardware support:
 - typically none, in general-purpose processors
 - MMX -- multiple 8-bit operations on 32-bit word
- Sound
 - sequence of fixed-point numbers

Other Data Types (continued)

- Some data types are supported directly by the instruction set architecture.
- Other data types are supported by interpreting values as logical, text, fixed-point, etc., in the software that we write.