CS150 - Computer Organization and Architecture
Homework #3 - Fall 2022

1. Convert the following binary numbers to equivalent decimal numbers.

 - (a) \((11100.001)_2\) \(28.125\)

 - (b) \((1001010.101)_2\) \(74.625\)

 - (c) \((10101.01)_2\) \(21.25\)

 - (d) \((1001011.111)_2\) \(75.875\)

 - (e) \((10110.010)_2\) \(22.25\)

2. Perform the following hexadecimal arithmetic.

 a. \(A4\) \(\times\) \(B\)

 \[70C\]

 b. \(8FF\) \(+\) \(402\)

 \[D01\]

 c. \(E06\) \(-\) \(7F\)

 \[D87\]

 d. \(46B\) \(-\) \(1FF\)

 \[26C\]

 e. \(68\) \(\times\) \(12\)

 \[786\]

 f. \(C8A\) \(+\) \(3FE\)

 \[1088\]
3. Convert the following decimal numbers into equivalent 16-bit two's complement binary numbers. Please show your work.

- \((211)_{10}\) 00000000 || 101 0011
- \((-211)_{10}\) ||| 111 0 010 1101
- \((32767)_{10}\) 0111 1111 1111 1111
- \((-9)_{10}\) ||| 1111 1111 1110 0
- \((-2)_{10}\) ||| 1111 1111 1111 0

4. One of the circuits below is combinational, whereas the other is sequential. Please label the circuits as such, and justify your answer.

![Combinational Circuit](image1)

![Sequential Circuit](image2)

Answer Here:

combinational
sequential
5. Generate a gate-level logic circuit diagram which satisfies the truth table shown below. Please use only AND, OR, and NOT gates and be sure to clearly denote wire junctions.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

[Diagram of a logic circuit with inputs A, B, and C and output Z]