
The CS150 Grimoire

Michael D. Wilder, Ph.D.
version P.004

ii

Contents

Title Page i

Contents ii

List of Figures iv

1 Introduction 1
1.1 Welcome! . 1

2 CS150 AVR Instruction Subset 2
2.1 Preliminaries . 2
2.2 Instruction Encoding/Decoding Amulet 3
2.3 Instruction Legend . 4

2.3.1 SREG: The ATmega328 status register 4
2.3.2 Registers and Operands . 4
2.3.3 Stack . 5
2.3.4 Flags . 5
2.3.5 Boolean Equations . 5

2.4 The Instructions . 6
ADC . 7
ADD . 8
AND . 9
ANDI . 10
ASR . 11
BRBC . 12
BRBS . 13
CALL . 14
COM . 15
CP . 16
CPI . 17
EOR . 18
IN . 19
JMP . 20
LDI . 21
LDS . 22

iii

LSR . 23
MOV . 24
NEG . 25
NOP . 26
OR . 27
ORI . 28
OUT . 29
POP . 30
PUSH . 31
RCALL . 32
RET . 33
RETI . 34
RJMP . 35
STS . 36

3 ATmega328 Ports 37

iv

List of Figures

3.1 Memory-Mapped ATmega328 Ports 37
3.2 Configuring PORTD Pin 2 as Input 38

1

Chapter 1

Introduction

1.1 Welcome!

Welcome to Computer Organization and Architecture (CS150) at the University of

Idaho. We are certainly happy to have you in this course. CS150 is a multidisciplinary

course, so you will rub shoulders with aspiring mages from fields such as Computer

Science, Computer Engineering, Electrical Engineering, and usually a few others.

Regardless of your background, we are glad that you’ve chosen to enroll in the course

and we hope that you will discover interesting ingredients and incantations to enhance

your repertoire. The passages ahead are twisty and difficult, but there is nothing in

the course that you can’t accomplish if you “put your mind to it” as the saying goes.

So remember to keep your toad spittle warm and your mandrake root dry and enjoy

the semester!

2

Chapter 2

CS150 AVR Instruction Subset

2.1 Preliminaries

Although we study precepts that span all processors in this course, we apply these

precepts to one processor in particular. That processor is the ATMEL ATmega328.

The ATmega328 is a member of the AVR family of processors, and implements the

AVR instruction set. The AVR instruction set is a set of instructions that are typically

found on all processors in the AVR family.

The ATmega328 implements hundreds of instructions. In CS150 we only study

(and use) a select subset of all instructions available on the ATmega328. This subset

is referred to as the “CS150 AVR instruction subset” and is detailed in the remainder

of this chapter. You are not required to understand or use any of the AVR instructions

implemented by the ATmega328 that do not appear in the CS150 AVR instruction

subset. Moreover, you are not permitted to use any of the AVR instructions available

on the ATmega328 that do not appear in the CS150 AVR instruction subset. All

work on assignments in this course must refer only to instructions contained within

this subset.

3

2.2 Instruction Encoding/Decoding Amulet

AVR Instruction Subset

ALU Instructions Immediate Instructions

Unary Logical Instructions Load/Store Instructions

Branch Instructions Input/Output Instructions

Call/Jump Instructions Return Instructions

Stack Instructions Relative Jump Instructions

4

2.3 Instruction Legend

This section is a legend for understanding the instructions that appear in the remain-

der of this chapter. Each instruction is copied from the “ATMEL AVR Instruction Set

Manual” reference which is on the course website, although there are minor modifica-

tions. The following terms and symbols are used in the narrative of these instructions:

2.3.1 SREG: The ATmega328 status register

C: The carry flag

Z: The zero flag

N: The negative flag

V: The overflow flag

S: The sign flag

H: The half-carry flag

T: The transfer flag

I: The interrupt flag

2.3.2 Registers and Operands

Rd: Destination register in the Register File

Rr: Source register in the Register File

R: Result after instruction has been executed

ALU RESULT: Register inside the ALU where a result is temporarily stored

K: Constant data

k: Constant address

A: I/O space address

s: Part of a 3-bit field indexing a bit in the status register

5

2.3.3 Stack

STACK: Location used for storing return address and pushed registers

SP: Stack Pointer (address of top of stack)

2.3.4 Flags

?: Flag is affected by a given instruction

-: Flag is unaffected by a given instruction

1: Flag is always set by a given instruction

0: Flag is always cleared by a given instruction

2.3.5 Boolean Equations

⇐ : Concurrent assignment

• : Logical AND

+ : Logical OR

⊕ : Logical XOR

X : Logical NOT (complement) of X

6

2.4 The Instructions

The rest of this chapter covers all the ATmega328 instructions that are members of the

“CS150 AVR Instruction Subset.” Each of these instructions is also contained in the

“ATMEL AVR Instruction Set Manual” reference which is on the course website. It

is advisable to avail yourself of both these resources when studying these instructions.

7

ADC: Add with carry

Description
Adds two registers and the contents of the C bit in the SREG and places the result in
the destination register Rd.

Operation
Rd ⇐ Rd + Rr + C

Syntax Operands Program Counter
ADC Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ⇐ PC + 1

Instruction Format
0001 11rd dddd rrrr

Status Register Usage

I T H S V N Z C

- - ? ? ? ? ? ?

H ⇐ Rd3 •Rr3 +Rr3 •R3 +Rd3 •R3
Set if there was a carry from bit 3.

S ⇐ N ⊕ V , for signed tests

V ⇐ Rd7 •Rr7 •R7 +Rd7 •Rr7 •R7
Set if two’s complement overflow resulted from the operation.

N ⇐ R7
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

C ⇐ Rd7 •Rr7 +Rr7 •R7 +Rd7 •R7
Set if there was a carry from the MSB of the result.

Example

; add r1:r0 to r3:r2

add r2,r0 ; add the low byte

adc r3,r1 ; add with carry the high byte

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

8

ADD: Add without carry

Description
Adds two registers and places the result in the destination register Rd.
Operation
Rd ⇐ Rd + Rr

Syntax Operands Program Counter
ADD Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ⇐ PC + 1

Instruction Format
0000 11rd dddd rrrr

Status Register Usage

I T H S V N Z C

- - ? ? ? ? ? ?

H ⇐ Rd3 •Rr3 +Rr3 •R3 +Rd3 •R3
Set if there was a carry from bit 3.

S ⇐ N ⊕ V , for signed tests

V ⇐ Rd7 •Rr7 •R7 +Rd7 •Rr7 •R7
Set if two’s complement overflow resulted from the operation.

N ⇐ R7
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

C ⇐ Rd7 •Rr7 +Rr7 •R7 +Rd7 •R7
Set if there was a carry from the MSB of the result.

Example

add r1,r2 ; add r2 to r1

add r28,r28 ; add r28 to itself (shift left r28 by one)

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

9

AND: Logical AND

Description
Computes the logical and of the contents of register Rd and register Rr and stores the
result in register Rd.

Operation
Rd ⇐ Rd • Rr

Syntax Operands Program Counter
AND Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ⇐ PC + 1

Instruction Format
0010 00rd dddd rrrr

Status Register Usage

I T H S V N Z C

- - - ? 0 ? ? -

S ⇐ N ⊕ V , for signed tests

V ⇐ 0
V is always cleared by this instruction.

N ⇐ R7
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

Example

and r2,r3 ; bitwise and r2 and r3, result in r2

ldi r16,1 ; load bitmask 0000 0001 into r16

and r2,r16 ; isolate bit 0 in r2

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

10

ANDI: Logical AND with Immediate

Description
Computes the logical and of the contents of register Rd and constant K and stores the
result in register Rd.

Operation
Rd ⇐ Rd • K

Syntax Operands Program Counter
ANDI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ⇐ PC + 1

Instruction Format
0111 KKKK dddd KKKK

Status Register Usage

I T H S V N Z C

- - - ? 0 ? ? -

S ⇐ N ⊕ V , for signed tests

V ⇐ 0
V is always cleared by this instruction.

N ⇐ R7
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

Example

andi r17,$0f ; clear upper nibble of r17

andi r18,$10 ; isolate bit 4 in r18

andi r19,$aa ; clear bits 0, 2, 4, and 6 in r19

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

11

ASR: Arithmetic Shift Right

Description
Shifts all bits in Rd one place to the right. Bit 7 of Rd is held constant. Bit 0 of Rd
is loaded into the C flag of the SREG. This operation effectively divides a signed value
by 2 without changing its sign. The C flag can be used to round the result.

Operation
C ⇐ Rd[0] ⇐ Rd[1] ⇐ Rd[2] ⇐ Rd[3] ⇐ Rd[4] ⇐ Rd[5] ⇐ Rd[6] ⇐ Rd[7]

Syntax Operands Program Counter
ASR Rd 0 ≤ d ≤ 31 PC ⇐ PC + 1

Instruction Format
1001 010d dddd 0101

Status Register Usage

I T H S V N Z C

- - - ? ? ? ? ?

S ⇐ N ⊕ V , for signed tests

V ⇐ N ⊕ C (for N and C after the shift)

N ⇐ R7
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

C ⇐ Rd0
Set if the LSB of Rd was set before the shift.

Example

ldi r16,$10 ; load 16 into r16

asr r16 ; r16 = r16 / 2

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

12

BRBC: Branch if Bit is Clear

Description
Conditional relative branch predicated by a single bit in the status register (SREG).
This instruction tests a single bit in SREG specified by the programmer. If the spec-
ified bit in the SREG is clear, this instruction branches to an instruction relative to
the PC. If the specified bit in the SREG is set, no branch is taken. This instruction
branches relative to the PC in either direction (PC − 63 ≤ destination ≤ PC + 64).
The parameter k is the offset from the PC and is represented in two’s complement form.

Operation
if SREG[s] = 0 then PC ⇐ PC + k

Syntax Operands Program Counter
BRBC s,k 0 ≤ s ≤ 7, -64 ≤ k ≤ 63 PC ⇐ PC + 1

Instruction Format
1111 01kk kkkk ksss

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

cpi r20,0 ; does r20 contain the value 0?

brbc 1,IsFalse ; branch to IsFalse if the Z flag is clear

...

IsFalse: nop ; branch destination

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 2 machine cycles to
complete if the predicate is true, or 1 if the predicate is false.

13

BRBS: Branch if Bit is Set

Description
Conditional relative branch predicated by a single bit in the status register (SREG).
This instruction tests a single bit in SREG specified by the programmer. If the spec-
ified bit in the SREG is set, this instruction branches to an instruction relative to
the PC. If the specified bit in the SREG is clear, no branch is taken. This instruction
branches relative to the PC in either direction (PC − 63 ≤ destination ≤ PC + 64).
The parameter k is the offset from the PC and is represented in two’s complement form.

Operation
if SREG[s] = 1 then PC ⇐ PC + k

Syntax Operands Program Counter
BRBS s,k 0 ≤ s ≤ 7, -64 ≤ k ≤ 63 PC ⇐ PC + 1

Instruction Format
1111 00kk kkkk ksss

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

cpi r20,0 ; does r20 contain the value 0?

brbs 1,IsTrue ; branch to IsTrue if the Z flag is set

...

IsTrue: nop ; branch destination

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 2 machine cycles to
complete if the predicate is true, or 1 if the predicate is false.

14

CALL: Call to a Subroutine

Description
This instruction makes an unconditional absolute branch to a subroutine located
anywhere within Program Memory. This instruction stores the return address (the
address of the instruction immediately after the CALL) on the stack. After the return
address is stored on the stack, this instruction decrements the stack pointer by 2 (uses
a post-decrement scheme).

Operation
PC ⇐ k

Syntax Operands Program Counter Stack
CALL k 0 ≤ k ≤ 32K PC ⇐ k STACK ⇐ PC

SP ⇐ SP − 2

Instruction Format
1001 010k kkkk 111k

kkkk kkkk kkkk kkkk

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

ldi r16,$a5 ; load r16 with sanity value

call CheckSanity ; check for sanity

nop

...

CheckSanity:

cpi r16,$a5 ; does r16 contain the value 0xa5?

brbc 1,Insane ; if it doesn’t something is very wrong

ret

...

Insane:

rjmp Insane ; stay right here cause we’re loopy

Space/Time
This instruction is 2 instruction words (4 bytes) wide and takes 4 machine cycles to
complete.

15

COM: One’s Complement

Description
This instruction computes the one’s complement of the value in Rd and stores the
result in Rd.

Operation
Rd ⇐ $FF − Rd

Syntax Operands Program Counter
COM Rd 0 ≤ d ≤ 31 PC ⇐ PC + 1

Instruction Format
1001 010d dddd 0000

Status Register Usage

I T H S V N Z C

- - - ? 0 ? ? 1

S ⇐ N ⊕ V , for signed tests

V ⇐ 0
V is always cleared by this instruction.

N ⇐ R7
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

C ⇐ 1
C is always set by this instruction.

Example

com r4 ; take one’s complement of r4

brbs 1,IsZero ; branch if result is zero

...

IsZero: nop ; branch destination

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

16

CP: Compare Registers

Description
This instruction compares the values of registers Rd and Rr. The values in Rd and Rr

are not modified by this instruction.

Operation
ALU Result ⇐ Rd − Rr

Syntax Operands Program Counter
CP Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ⇐ PC + 1

Instruction Format
0001 01rd dddd rrrr

Status Register Usage
I T H S V N Z C

- - ? ? ? ? ? ?

H ⇐ Rd3 •Rr3 +Rr3 •R3 +R3 •Rd3
Set if there was a borrow from bit 3.

S ⇐ N ⊕ V , for signed tests

V ⇐ Rd7 •Rr7 •R7 +Rd7 •Rr7 •R7
Set if two’s complement overflow resulted from the operation.

N ⇐ R7
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

C ⇐ Rd7 •Rr7 +Rr7 •R7 +R7 •Rd7
Set if the absolute value of the contents of Rr is greater than the

absolute value of the contents of Rd.

Example
cp r4,r19 ; compare r4 with r19

brbc 1,NotEqual ; branch if r4 != r19

...

NotEqual: nop ; branch destination

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

17

CPI: Compare Register with Immediate

Description
This instruction compares the value of register Rd and a constant value. The value
in Rd is not modified by this instruction.

Operation
ALU Result ⇐ Rd − K

Syntax Operands Program Counter
CPI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ⇐ PC + 1

Instruction Format
0011 KKKK dddd KKKK

Status Register Usage
I T H S V N Z C

- - ? ? ? ? ? ?

H ⇐ Rd3 •K3 +K3 •R3 +R3 •Rd3
Set if there was a borrow from bit 3.

S ⇐ N ⊕ V , for signed tests

V ⇐ Rd7 •K7 •R7 +Rd7 •K7 •R7
Set if two’s complement overflow resulted from the operation.

N ⇐ R7
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

C ⇐ Rd7 •K7 +K7 •R7 +R7 •Rd7
Set if the absolute value of the contents of K is greater than the

absolute value of the contents of Rd.

Example
cpi r19,$CC ; compare r19 with 0xCC

brbs 1,Equal ; branch if r19 = 0xCC

...

Equal: nop ; branch destination

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

18

EOR: Exclusive OR

Description
This instruction computes the logical exclusive-or of register Rd and register Rr and
places the result in the destination register Rd.

Operation
Rd ⇐ Rd ⊕ Rr

Syntax Operands Program Counter
EOR Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ⇐ PC + 1

Instruction Format
0010 01rd dddd rrrr

Status Register Usage

I T H S V N Z C

- - - ? 0 ? ? -

S ⇐ N ⊕ V , for signed tests

V ⇐ 0
V is always cleared by this instruction.

N ⇐ R7
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

Example

eor r4,r4 ; clear all bits in r4

eor r0,r22 ; bitwise xor of r0 and r22

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

19

IN: Load an I/O Location into a Register

Description
This instruction loads the data at an address in I/O space into register Rd.

Operation
Rd ⇐ I/O(A)

Syntax Operands Program Counter
IN Rd,A 0 ≤ d ≤ 31, 0 ≤ A ≤ 63 PC ⇐ PC + 1

Instruction Format
1011 0AAd dddd AAAA

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

in r16,5 ; load value of PORTB into r16

cpi r16,$ff ; check if all bits in r16 are set

brbs 1,AllSet ; branch if all bits are set in r16

...

AllSet: nop ; branch destination

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

20

JMP: Jump

Description
This instruction makes an unconditional absolute branch to a location anywhere
within Program Memory.

Operation
PC ⇐ k

Syntax Operands Program Counter
JMP k 0 ≤ k ≤ 32K PC ⇐ k

Instruction Format
1001 0100 0000 1100

0kkk kkkk kkkk kkkk

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

mov r1,r0 ; copy r0 into r1

jmp farplc ; unconditional branch

...

farplc: nop ; branch destination

Space/Time
This instruction is 2 instruction words (4 bytes) wide and takes 3 machine cycles to
complete.

21

LDI: Load Immediate

Description
This instruction loads an 8-bit constant into register Rd.

Operation
Rd ⇐ K

Syntax Operands Program Counter
LDI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ⇐ PC + 1

Instruction Format
1110 KKKK dddd KKKK

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

ldi r31,$1f ; load 31 into r31

ldi r30,30 ; load 30 into r30

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

22

LDS: Load Direct from Data Space

Description
This instruction loads one byte from data space into register Rd. The data space
consists of the register file, I/O memory, and internal SRAM.

Operation
Rd ⇐ (k)

Syntax Operands Program Counter
LDS Rd,k 0 ≤ d ≤ 31, 0 ≤ k ≤ 65535 PC ⇐ PC + 2

Instruction Format
1001 000d dddd 0000

kkkk kkkk kkkk kkkk

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

lds r22,$ff00 ; load r22 with contents of data space location $ff00

andi r22,$fe ; clear bit 0 in r22

sts $ff00,r22 ; write modified data back to where it came from

Space/Time
This instruction is 2 instruction words (4 bytes) wide and takes 2 machine cycles to
complete.

23

LSR: Logical Shift Right

Description
Shifts all bits in Rd one place to the right. Bit 7 of Rd is cleared. Bit 0 of Rd is loaded
into the C flag of the SREG. This operation effectively divides an unsigned value by
two. The C flag can be used to round the result.

Operation
C ⇐ Rd[0] ⇐ Rd[1] ⇐ Rd[2] ⇐ Rd[3] ⇐ Rd[4] ⇐ Rd[5] ⇐ Rd[6] ⇐ Rd[7] ⇐ 0

Syntax Operands Program Counter
LSR Rd 0 ≤ d ≤ 31 PC ⇐ PC + 1

Instruction Format
1001 010d dddd 0110

Status Register Usage

I T H S V N Z C

- - - ? ? 0 ? ?

S ⇐ N ⊕ V , for signed tests

V ⇐ N ⊕ C (for N and C after the shift)

N ⇐ 0
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

C ⇐ Rd0
Set if the LSB of Rd was set before the shift.

Example

lsr r8 ; shift r8 right, putting bit 0 into the C flag

brbs 0,BitWasOne ; if bit 0 was a 1, branch to BitWasOne

...

BitWasOne: nop ; branch destination

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

24

MOV: Move Value From Register

Description
This instruction moves the value in Rr into Rd. The value in Rr remains unchanged,
while the destination register Rd is loaded with a copy of Rr.

Operation
Rd ⇐ Rr

Syntax Operands Program Counter
MOV Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ⇐ PC + 1

Instruction Format
0010 11rd dddd rrrr

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

mov r16,r0 ; copy r0 into r16

call check ; call subroutine

...

check:

cpi r16,$11 ; compare r16 to 17

...

ret ; return from subroutine

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

25

NEG: Two’s Complement

Description
This instruction replaces the contents of register Rd with its two’s complement; the
value $80 is left unchanged.

Operation
Rd ⇐ $00 − Rd

Syntax Operands Program Counter
NEG Rd 0 ≤ d ≤ 31 PC ⇐ PC + 1

Instruction Format
1001 010d dddd 0001

Status Register Usage

I T H S V N Z C

- - ? ? ? ? ? ?

H ⇐ R3 +Rd3
Set if there was a borrow from bit 3.

S ⇐ N ⊕ V , for signed tests

V ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if there is a two’s complement overflow from the implied subtraction from $00.

A two’s complement overflow will occur if and only if the result is $80.

N ⇐ R7
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

C ⇐ R7 +R6 +R5 +R4 +R3 +R2 +R1 +R0
Set if there is a borrow in the implied subtraction from $00. The C flag will always
be set unless the result is $00.

Example

neg r19

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to complete.

26

NOP: No Operation

Description
This instruction performs a single-cycle No Operation.

Operation
none

Syntax Operands Program Counter
NOP none PC ⇐ PC + 1

Instruction Format
0000 0000 0000 0000

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

call DelaySevenCycles

...

DelaySevenCycles:

nop

nop

nop

ret ; return takes 4 cycles

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

27

OR: Logical OR

Description
Computes the bitwise logical OR of the contents of registers Rd and Rr and places
the result in Rd.

Operation
Rd ⇐ Rd v Rr

Syntax Operands Program Counter
OR Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ⇐ PC + 1

Instruction Format
0010 10rd dddd rrrr

Status Register Usage

I T H S V N Z C

- - - ? 0 ? ? -

S ⇐ N ⊕ V , for signed tests

V ⇐ 0
V is always cleared by this instruction.

N ⇐ R7
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

Example

or r16,r1 ; perform OR of r16 with r1

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

28

ORI: Logical OR with Immediate

Description
Computes the bitwise logical OR of the contents of register Rd and a constant and
places the result in Rd.

Operation
Rd ⇐ Rd v K

Syntax Operands Program Counter
ORI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ⇐ PC + 1

Instruction Format
0110 KKKK dddd KKKK

Status Register Usage

I T H S V N Z C

- - - ? 0 ? ? -

S ⇐ N ⊕ V , for signed tests

V ⇐ 0
V is always cleared by this instruction.

N ⇐ R7
Set if MSB of the result is set.

Z ⇐ R7 •R6 •R5 •R4 •R3 •R2 •R1 •R0
Set if the result of the operation was 0.

Example

ori r16,$F0 ; set high nibble of r16

ori r17,1 ; set bit 0 of r17

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

29

OUT: Store Register Value to I/O Location

Description
This instruction stores the value of register Rr into an address in I/O space.

Operation
I/O(A) ⇐ Rr

Syntax Operands Program Counter
OUT A,Rr 0 ≤ r ≤ 31, 0 ≤ A ≤ 63 PC ⇐ PC + 1

Instruction Format
1011 1AAr rrrr AAAA

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

ldi r16,$08 ; load 0000 1000 into r16

out $05,r16 ; set PORTB pin 3 (PORTB[3])

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

30

POP: Pop Value from Stack into Register

Description
This instruction loads register Rd with a value from the stack. The stack pointer (SP)
is incremented by 1 before the pop. The stack is not scrubbed as a result of this
operation.

Operation
Rd ⇐ STACK(SP)

Syntax Operands Program Counter Stack
POP Rd 0 ≤ d ≤ 31 PC ⇐ PC + 1 SP ⇐ SP + 1

Instruction Format
1001 000d dddd 1111

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

call MyFunction

...

MyFunction:

push r31 ; save r31

push r30 ; save r30

... ; more work here...

pop r30 ; restore r30

pop r31 ; restore r31

ret

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

31

PUSH: Push Register Value onto Stack

Description
This instruction stores the value of register Rr on the stack. The stack pointer (SP)
is decremented by 1 after the push. The value in register Rr is not affected by this
instruction.

Operation
STACK(SP) ⇐ Rr

Syntax Operands Program Counter Stack
PUSH Rr 0 ≤ r ≤ 31 PC ⇐ PC + 1 SP ⇐ SP − 1

Instruction Format
1001 001r rrrr 1111

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

call MyFunction

...

MyFunction:

push r31 ; save r31

push r30 ; save r30

... ; more work here...

pop r30 ; restore r30

pop r31 ; restore r31

ret

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 1 machine cycle to
complete.

32

RCALL: Relative Call to Subroutine

Description
This instruction makes a relative call to an address within PC - 2K + 1 and PC +
2K instruction words. The address of the instruction after the RCALL is stored onto
the stack as the return address. The stack pointer (SP) is decremented by two bytes
(one instruction word) after the return address is stored.

Operation
PC ⇐ PC + k

Syntax Operands Program Counter Stack
RCALL k -2K ≤ k ≤ K PC ⇐ PC + 1 STACK ⇐ PC
. SP ⇐ SP − 2

Instruction Format
1101 kkkk kkkk kkkk

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

rcall MyFunction

...

MyFunction:

push r31 ; save r31

push r30 ; save r30

... ; more work here...

pop r30 ; restore r30

pop r31 ; restore r31

ret

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 3 machine cycles to
complete.

33

RET: Return from Subroutine

Description
This instruction actualizes a return from a subroutine. The return address is loaded
from the stack. The stack pointer (SP) is incremented by two bytes (one instruction
word) before the return address is retrieved from the stack.

Operation
PC ⇐ STACK(SP)

Syntax Operands Stack
RET This instruction has no operands SP ⇐ SP + 2

Instruction Format
1001 0101 0000 1000

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

rcall MyFunction

...

MyFunction:

push r31 ; save r31

push r30 ; save r30

... ; more work here...

pop r30 ; restore r30

pop r31 ; restore r31

ret

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 4 machine cycles to
complete.

34

RETI: Return from Interrupt

Description
This instruction actualizes a return from an interrupt. The return address is loaded
from the stack. The stack pointer (SP) is incremented by two bytes (one instruction
word) before the return address is retrieved from the stack. This instruction sets the
Global Interrupt flag in SREG to permit further interrupts.

Operation
PC ⇐ STACK(SP)

Syntax Operands Stack
RETI This instruction has no operands SP ⇐ SP + 2

Instruction Format
1001 0101 0001 1000

Status Register Usage

I T H S V N Z C

1 - - - - - - -

I ⇐ 1
I is always set by this instruction.

Example

ISR_0:

push r0 ; save r0

... ; more work here...

pop r0 ; restore r0

reti

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 4 machine cycles to
complete.

35

RJMP: Relative Jump

Description
This instruction makes an unconditional absolute branch to a location within PC -
2K + 1 and PC + 2K instruction words in Program Memory.

Operation
PC ⇐ PC + k

Syntax Operands Program Counter
RJMP k -2K ≤ k ≤ 2K PC ⇐ PC + k

Instruction Format
1100 kkkk kkkk kkkk

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

cpi r16,$42 ; compare r16 to 66

brbs 1,error ; if not equal, error

rjmp ok

error:

add r16,r17

inc r16

ok: nop

Space/Time
This instruction is 1 instruction word (2 bytes) wide and takes 2 machine cycles to
complete.

36

STS: Store Direct to Data Space

Description
This instruction stores one byte from register Rr into data space. The data space
consists of the register file, I/O memory, and internal SRAM.

Operation
(k) ⇐ Rr

Syntax Operands Program Counter
STS k,Rr 0 ≤ r ≤ 31, 0 ≤ k ≤ 65535 PC ⇐ PC + 2

Instruction Format
1001 001r rrrr 0000

kkkk kkkk kkkk kkkk

Status Register Usage

I T H S V N Z C

- - - - - - - -

This instruction does not modify any SREG bits.

Example

lds r22,$ff00 ; load r22 with contents of data space location $ff00

andi r22,$fe ; clear bit 0 in r22

sts $ff00,r22 ; write modified data back to where it came from

Space/Time
This instruction is 2 instruction words (4 bytes) wide and takes 2 machine cycles to
complete.

37

Chapter 3

ATmega328 Ports

The AVR family of processors contains a set of 8-bit ports. These ports are essentially
pins that are tied to 8-bit registers, and are used to communicate with the world
outside the processor. Ports on AVR processors are reconfigurable and are mapped
into data memory. Ports must be configured before they are used. Figure 3.1 shows
the ports on the ATmega328 and the addresses to which they are mapped.

I/O Space Address Data Space Address Register Name

0x0B 0x2B PORTD

0x0A 0x2A DDRD

0x09 0x29 PIND

0x08 0x28 PORTC

0x07 0x27 DDRC

0x06 0x26 PINC

0x05 0x25 PORTB

0x04 0x24 DDRB

0x03 0x23 PINB

Figure 3.1: Memory-Mapped ATmega328 Ports

Individual pins associated with a given port can be configured to be either an
input or an output at any given time. The role of an individual pin (or all of the
pins) associated with a given port can be changed at runtime. Figure 3.2 shows
assembly language code for configuring pin 2 of PORTD (or PORTD[2]) as an input.
This sample code configures the data direction of PORTD[2] without changing the
data direction associated with any of the other pins. This sample uses data space

38

instructions (lds and sts), and therefore must use the “Data Space Address” of DDRD
as depicted in Figure 3.1 in order to configure the data direction of PORTD pin 2.

.equ _ddrd = $2a

lds r24,_ddrd ; load r24 with DDRD

andi r24,$fb ; clear Pin 2 (to make it an input)

sts _ddrd,r24 ; write back to DDRD

Figure 3.2: Configuring PORTD Pin 2 as Input

