Avoiding Run-Time Infeasibility in Systems
Containing Coupled Tasks"*

AW. Krings M.H. Azadmanesh
Computer Science Dept. Computer Science Dept.
University of Idaho University of Nebraska at Omaha
Moscow, ID 83844-1010 Omaha, NE 68182-0459
krings@cs.uidaho.edu azad@unomaha.edu
Abstract

This paper investigates the problem of guaranteeing stability and run-time feasibility in real-
time systems containing coupled tasks, in the context of non-preemptive priority scheduling.
Instability is the result of so-called multiprocessor timing anomalies, where deadlines can
be missed due to the reduction in task durations. Such reductions can also result in run-
time infeasibility of coupled task pairs due to the inherent inter-task timing constraints. A
scheduling environment, feasibility conditions and a general algorithm are presented that
avoid both phenomena at run-time.

Résumé

Cet article examine le probleme qui consiste a garantir la stabilité et faisabilité au cours de
lexécution dans des systemes temps-réel, contenant des taches reliées par des relations de
précédence, dans le contexte d’ordonnancements non-préemptifs. L’instabilité est le résultat
d’anomalies temporelles du multiprocesseur, ou les dates limites ne sont pas respectées a
cause de la réduction de la durée des taches. De telles réductions peuvent également avoir
pour conséquence la non-faisabilité de paires de taches reliées, ceci étant du aux contraintes
de temps inhérentes entre deux taches. L’environnement du programme, les conditions de
faisabilité et un algorithme général qui €vitent ces deuxr phénomeénes pendant ['exécution
sont présentés.

*This work has been supported in part by the Ul Microelectronic Research and Communications Institute

(MRC).

1 Introduction

Many real-time control applications are operating in multiprocessor environments to take
advantage of parallelism of the workload, or as a redundancy issue for fault-tolerant rea-
sons. The workload consists of individual tasks, which are small, un-interruptible program
segments. In hard real-time systems, computations of individual tasks are marked by task
deadlines and inter-task timing constraints. In safety critical environments, violation of
deadlines or timing constraints could have catastrophic results, i.e. loss of human lives,
environmental damage or unacceptable cost. Therefore, it is increasingly desired that the
algorithms scheduling the workload be formally verified to guarantee correctness and the

absence of side effects [1].

In most real-time applications only a small number of tasks in the workload have critical
inter-task timing constraints, so-called inter-task timing dependencies [4]. In the context of
this paper tasks with inter-timing dependencies are referred to as coupled tasks, since the
execution of one task is coupled to the execution of another task by a fixed coupling delay.
Other frequently used terminologies to describe coupled tasks are end-to-end and temporal
distance constraint tasks. Examples of coupled tasks are: a delay of an actuator movement
to compensate for mechanical movement of target objects, two messages that must be sent
within fixed intervals from each other, or navigation coordinates that must be updated at

a fixed time after a course correction.

Different aspects of coupled events have been studied. Some research focused on scheduling
based on the pinwheel problem [3, 7, 8]. Most work, including [4, 5, 24], address end-
to-end constraints in the context of periodic processes. One way of dealing with coupled
events has been to adopt automated design methods using reconstructing tools [5], or
letting the scheduler adapt itself to varying execution times [22]. Methods of validating
timing constraints for different scheduling environments are discussed in [6, 16, 17]. Real-
world applications considering inter-task timing constraints are described in the context of

projects such as the Spring Kernel [20] or the GMD-Snake robot [21].

This paper considers dispatching in systems containing coupled task-pairs which are em-

bedded in a normal workload. Section 2 describes the scheduling environment and the

problem of instability and infeasibility. The basics of run-time stabilization to avoid insta-
bility is discussed in Section 3. Section 4 specifies feasibility conditions and a general stable

run-time dispatching algorithm. Finally, Section 5 concludes the paper with a summary.

2 The Scheduling Environment

2.1 Task Model

In general, a task T' is the basic unit of computation, consisting of a set of sequentially
executed instructions. Associated with each task T; is a maximum and minimum compu-

min
7

tation time ¢*** and /""", release time r; at which the task becomes ready for execution,
starting time s;, and finishing time f;. Task dependencies, i.e. precedence among tasks,
are defined by a partial order. Thus, the workload can be represented by a directed acyclic
graph. Given two tasks T} and T} where T} precedes T}, task T} cannot start earlier than the
completion time of T;. Specifically, a task T, becomes ready for execution at the time its

last predecessor finishes. Tasks are assumed to be executed on M homogeneous processors.

Coupled tasks are considered in pairs of tasks as shown in Figure 1. The first task, 77,
is the parent, coupled by a coupling delay d;; to the child task, 7. Then, the starting
time of child task T is defined as the starting time of parent T} plus the coupling delay,
i.e. s¢ = s! +dg;. Thus, coupling delay d;; represents the inter-task timing dependency,
and it constitutes an implicit precedence constraint between T} and T¢. The coupling is
considered to be “simple” in that the child task 77 has an in-degree of 1. Thus, 7% has
only one predecessor, namely a task called “enforcer phantom” that serves as a mechanism
to enforce the coupling to parent 77, as will be described in Section 4. This constraint
reflects considerations of applicability of the concept of coupled events. Furthermore, each
parent is assumed to have only one coupled child. This second constraint serves only as
a simplification of the material presented here. However, the solutions presented can be

modified to overcome this constraint. The set of parent tasks and child tasks is assumed

to be disjoint.

Given a coupled task pair (T7,T¢), several types of couplings can be defined, based on

g J

whether task starting times, task finishing times, or combinations thereof are considered.

This research focuses on the coupling of task starting times since task durations may vary
at run-time. However, the approaches described here can be modified to reflect other cou-
plings, i.e. starting-to-finishing times or finishing to finishing times, by making assumptions

about execution time variations of coupled tasks.

Coupled tasks are differentiated from regular tasks, i.e. task in the regular sense, because
they have special properties inherent to their coupling as will be described later. Regular

and coupled tasks are collectively called real tasks.

Figure 1: Coupled Task Pair

Special tasks called phantom tasks have been used to model events external to a processor,
such as delayed task release, non-transparent overhead or task synchronization [10, 13, 15].
These tasks are fully incorporated into the precedence graph. Although they consume time,
unlike real tasks, they consume no resources. As a result, phantom tasks may always be
started upon becoming released. Phantom tasks will be the basic mechanism for controlling

coupled tasks at run-time, enforcing the coupling delay.

2.2 Definitions

The algorithms described in this paper are based on a variation of priority list scheduling,
where whenever a processor becomes available, the run-time dispatcher scans the task list
from left to right, and the first unexecuted ready task encountered in the scan is assigned
to the processor. The dispatcher is distinct from the scheduling algorithm. Whereas the
scheduler is executed only once at design time, the dispatcher arbitrates tasks during run-

time.

A Standard Scenario describes the schedule obtained by using a particular set of task

durations. It denotes a schedule in which each T; uses the maximum computation time

c** [18]. The Gantt chart depicting the standard scenario is called the Standard Gantt

k3

Chart (SGC).

In a Non-Standard Scenario, tasks T; execute with c;mm < ¢ < ™. However, at least

maxr

one T} has duration ¢; less than its maximum computation time ¢’

resulting Gantt chart is called Non-Standard Gantt Chart (NGC).

e ¢y < . The

The dispatcher selects tasks from a list called projective list. This list is in one-to-one

correspondence with the SGC, i.e. its tasks are ordered according to the time each task is

picked up on the SGC [18].

A schedule is stable if there exists no scenario in which the finishing time of any 7; in the
NGC exceeds its completion time on the SGC. With non-standard computation times not
known apriori, i.e. ¢ < ¢; < ¢, given any task T}, the “deadline” for s; is s5'¢, the
starting time on the SGC as denoted by superscript std. Thus, if s; < s#'4, then f; < f5t,

Similarly, task couplings are also defined with respect to their standard starting times, i.e.

std std
]‘ - SZ .

a task coupling from T} to T is given by d;; = s

Several task sets will be used throughout the paper. Let T.; denote the set of all tasks
which started before T; on the SGC, i.e. T.; is the set of tasks with indices less than .
T, is defined as To; U{T;}. Sets Ts; and Ts; are symmetric to T«; and T<; respectively.
Let T? and T* denote the set of all coupled parent and child tasks 7] and T respectively,
and T? = T? U T¢. By assumption, T? N T¢ = ¢.

In a given scenario, a task T), is unstable if and only if it is the lowest numbered task to start
late, 1.e. s, > Sf]td, and s; < Sftd VT, € T.,. An unstable task is said to cause scheduling
instability. Task T, is vulnerable to instability if there exists any scenario in which T}, is
unstable. With respect to coupled tasks: when an SGC schedule becomes infeasible as the
result of rescheduling the coupled child whose parent started early, scheduling infeasibility

has occurred.

2.3 Instability and Infeasibility

Whereas instability is the result of a task becoming unstable, infeasibility relates to the
effects of changes directly related to the standard scenario. Instability and infeasibility will
be demonstrated using the example in Figure 2. The precedence graph contains eight tasks
with maximum durations listed next to each vertex. To show instability, the edge between
T, and 77 is to be interpreted as a precedence constraint. Task priorities are defined in order
of increasing starting times on the dual-processor SGC in Figure 2b. During execution, the
dispatcher scans the projective list and selects the first ready task for execution. Scheduling
instability can be observed on NGCI1, where T} is shortened by an arbitrarily small value
¢. The shortened T} finishes before T3, and 1% is able to “usurp” processor P1. The results
are missed deadlines and an increase in total makespan, i.e. both Ts and Tg start later on

NGC1 than they did on the SGC and the makespan increases by 2 — e.

P1 T Ty |T4| T5 T;
SGC -
P2 T3 Te Tg

P1 T T, My Ty Te Tg

NGCl1 -
2 3 P2 T, | Ts
/ Pl

/
4 \ NGC2 -
2@ 2 P2 T3 | T | Tg

a) Precedence Graph b) Gantt Charts

Figure 2: Example of Instability and Infeasibility

In order to demonstrate infeasibility, assume the edge between Ty and T% indicates a coupling

delay with dy 7 = 58! — 55! = 6 — 3 = 3. Now, assume that T} finished at f, = s5/¢ + 5",

as shown in NGC2 of Figure 2b. At f5 task T4 becomes ready, but dispatching T, implies
that 77 has to be shifted as well due to the coupling delay. However, such shift of 77 is
infeasible, since both processors are occupied by T and Ts. As a consequence, the coupling
delay is violated. Thus, although T} is ready, it should not be dispatched in order to avoid
infeasibility of T%. Infeasibility of course results in instability. For instance, dispatching T}

early in NGC2 causes T7 to start late.

A dispatching algorithm must avoid both run-time instabilities and infeasibilities. To avoid
instabilities, two stabilization methods have been proposed that can be partitioned into

apriori and run-time stabilization.

L. In Apriori Stabilization methods, stabilization is achieved by (1) restricting the dis-
patcher, i.e. fixing the task starting sequence or task starting times, or by (2) modi-

fying the task graph by introducing additional precedence constraints [9, 18, 19, 23].

2. Run-Time Stabilization is a less restrictive stabilization method, where the dispatcher
limits the depth of its scan into the task list in order to avoid instabilities. This

approach takes advantage of information available at run-time [13, 14, 15].

Apriori stabilization is not equipped to deal with infeasibilities efficiently. However, it will
be shown that a new variation of Run-Time Stabilization can prevent both instability and

feasibility.

3 Basic Run-Time Stabilization

This section addresses issues of run-time stabilization in the absence of coupled task pairs,
i.e. TP = ¢. Thus, the task system consists of non-coupled real tasks and phantom
tasks. Stable solutions for such task model have been presented in [11, 12, 13, 14, 15]. The
main concept will be repeated here, as it builds the basis for avoidance of infeasibility, as

described in Section 4.

The first step in the chain of events possibly leading to instability is a priority inversion by
some task 7T, such that s, < s; for some T; with ¢ < « [11]. Task T, is said to usurp. It is

7

the responsibility of the run-time stabilization algorithm to only allow the dispatching of

those usurper tasks that cannot induce instability.

3.1 The Scan Window

When a processor finishes its current task, the traditional priority list dispatcher starts at
the head of the list, scanning the list until it finds a ready task, if one exists. The scan
window approach restricts the scan by limiting the scan depth to the size of a so-called scan
window. The scan window ¥ = {7, ..., T;} is this subset of unstarted real tasks scanned by
the dispatcher, where T, and T} are the first and last real tasks visible to the dispatcher. If
the number of tasks scanned is limited such that no usurper task is ever started before a

vulnerable task, stability can be enforced at run-time.

3.2 Fan-out

A fan-out occurs when a phantom task releases a real task, or when a real task causes the
release of a second real task executing in parallel with the first real task. The initiating
release is called a logical fork, since either case causes the occupancy of one more processor,
i.e. from 0 to 1 and from 1 to 2 processors for phantom and real forks respectively. Fan-out,
caused by logical forks, is a necessary condition for instability to occur. It will be shown

later that this is not generally true if T?° # ¢ as can be seen in NGC2 of Figure 2b.

A fan-out task is defined as a real task with at least one of the following properties: (1) it
is descendent from an unfinished forking task, and it started executing on the SGC while
another descendent of the same forking task was executing on another processor, (2) it is a

descendent of an unfinished phantom task.

The second property deserves some explanation. To show the effect of a fan-out caused by
a phantom task consider the scenario in Figure 3a, where the phantom task 7), has real
descendent T,. Figure 3b shows that a phantom task can be thought of as a phantom
T, running on a phantom processor PP, i.e. an imaginary processor. Upon finishing, T},
releases a phantom child 7}, and real task T, which are dispatched on phantom processor

P? and real processor Pl respectively. Thus, property (2) of the fan-out definition above

is essentially the same as property (1), except that the existence of the phantom child T},

causing the fan-out of T,, might not be obvious.

Figure 3: Phantom Task Model

Let T, be the first fan-out task and T, the first task in the scan-window. On the SGC, T,
was the task that occupied an additional processor, i.e. T, caused a fan-out of 1. It can be
shown that one can safely scan up to T, [12]. This defines a scan window ¥ = {7}, ..., T,,_1}.
Assume that T}, is the only fan-out task in the workload. If one wants to scan past T,
stability is guaranteed provided there is at least one idle processor that can be reserved
to absorb the possible fan-out of T,,. In general, to scan past T,, one needs to identify
additional fan-out tasks in Ts,,. Let T,y = 7., and define T,,; as the :** fan-out task. All

T are called basic fan-out tasks, in that each T,; can cause a fan-out of 1.

3.2.1 Effective Fan-out

Let F(T,) be a function that indicates how many basic fan-out tasks with indices less than
or equal w are overlapping on the SGC at standard starting time s5'¢. Thus F(T,,) is the
cardinality of set {1} : T; € T<,,, T; is a fan-out task, and sstd < gotd < fstd) A task T, is
said to have an effective fan-out of F(T,).

Not every basic fan-out task contributes to an increase in the effective fan-out. Assume
that several basic fan-out tasks exist such that their executions do not overlap on the SGC,
e fid < s5 for any Ty and Ty, with i < j. It can be shown [13, 14] that these
non-overlapping basic fan-out tasks can collectively contribute only to an effective fan-out
of 1. Let T.; denote the lowest numbered basic fan-out task with F(7T,) = i. Then T,; is
called an effective fan-out task. T.; is thus the first task executing in parallel with ¢« — 1

other fan-out tasks from T,. T,y is the first effective fan-out task (F(7T.;) = 1), T, is the
second (F(T.2) = 2), and so forth. Every effective fan-out task is also a basic fan-out task,
but the reverse is not necessarily true. This follows directly from the definition of effective
fan-out, i.e. T¢; is the first fan-out task, but it is not necessarily the only fan-out task with
a fan-out of ¢. As a convention, task subscripts starting with letter e will be reserved for

effective fan-out tasks.

3.2.2 Scan Frames

The priority list can be partitioned starting with the first unstarted task. The general
priority list at the time of the scan is (Teo, ..oy Tetyoves Teay ooy Tepy -o.). Task T = T, if?
F(T,) =0, otherwise Ty does not exist and the list starts with T,;. T.x is the last effective
fan-out task. Positioned between T.; and T¢(;11) are any number of tasks T; with effective
fan-outs 0 < F(T;) < ¢. These tasks, including T;, are called the Scan-Frame of T,; and
are denoted by A.. Thus frame A,; is the set {71, ..., Te(i—l—l)—l}- The definition of scan-
frames is with respect to the current scan. In general, scan-frames have to be newly defined

whenever a fan-out task is released that causes a decrease in the effective fan-out of some

T.;, the task defining A.;.

3.2.3 Dispatching Philosophy

With the knowledge of idle processors at the time of the scan, the safe scan window can
now be expressed as a sequence of frames. Let [, < I — 1 be the number of idle processors
reserved at the time of the scan, leaving one processor to start the ready task being searched
for. Then it can be shown [13, 15] that the safe scan window is ¥ = A, g UAU...UA, .

It A.; does not exist, then X extends over the entire task list.

4 Dispatching with Coupled Tasks

K3

the starting times of the SGC. Returning to NGC2 of Figure 2b, one can observe that, if the

Task couplings imply temporal bindings of tasks 77 and T that are defined according to

LF(T,) # 0 if and only if T, is descended from a phantom task.

10

dispatcher does not prevent early starting of parent T}, infeasibility results, i.e. child task
T misses its deadline. Early starting of coupled tasks in the absence of stable dispatching
algorithms may result in the following problems: (1) parent task 7} may induce instability,

and (2) corresponding child T may be subject to infeasibility, and may cause instability.

4.1 Trivial Solution

One way of preventing infeasibility is to simply prevent any tasks in T?¢ from starting early.
This can be modeled by defining an enforcer phantom task T,, as a predecessor for each
T, € T?® as can be seen in Figure 4, setting s,, = 0 and ;" = cg;m = S;td. Any scan
window algorithm, e.g. those presented in [13, 14, 15], can now be applied to this modified
task system. However, this approach is very inefficient because the actual task durations
of many real-time applications are much smaller than their maximum, standard durations,
e.g. up to an order of magnitude shorter [2]. Specifically, response to non-coupled tasks
improves drastically as the schedule compacts, whereas the response time of coupled tasks

is always worst case, i.e. fixed as defined in the SGC.

: Tpi /\’ < ---- Enforcer Task for TF

Figure 4: Enforcer Phantom Tasks

4.2 General Solution

In the general approach only the starting of tasks in T¢ is enforced by phantom tasks.
However, a task T € T? can be started early only if its corresponding T can be guaran-
teed the same shift in the future, without causing instability. This actually constitutes a

“promotion”, i.e. a left shift of T on the SGC, together with the appropriate adjustment

11

of the corresponding enforcer phantom’s duration. This is fundamentally different from
earlier run-time stabilization methods, as now task priorities generally will not be static
anymore, i.e. the priority list order may change. In the following, appropriate adjustment
of enforcer phantom task durations for tasks in T¢ to reflect a promotion is implied and
will not be explicitly mentioned. Also, it is assumed that the index of the promoted task
is adjusted to reflect the task’s new position in the projective list. In the outline of the
general run-time stabilization algorithm below, an algorithm or workload is called regular
if it excludes coupled tasks. Examples of regular algorithms are those found in [13, 14, 15].

Scheduling workloads containing coupled tasks involves the following steps:

1. Non-coupled tasks and tasks from T¢ are scheduled using regular stabilization algo-

rithms.

2. Tasks TP € T? are scheduled using regular run-time stabilization algorithms if the

following conditions are true for the corresponding 7'

Cl: T¥ can be promoted into a vacant slot on the SGC.

C2: The promotion of T% does not take over a processor that was reserved to com-
pensate for fan-out in scan frames overlapping with the execution of currently

executing usurper tasks.

Some explanations are needed for the two conditions. With respect to C1, as tasks finish,
their corresponding SGC slots become vacant. Promotion into a vacant slot provides the
basis for feasibility with respect to guaranteeing the coupling delay, but does not guarantee
stability. Condition C2 indicates that just because the time slot on the SGC was vacant
does not eliminate the possibility that this processor is reserved. The processor could be

mortgaged to compensate for fan-outs due to previous usurpation.

4.2.1 Regular Frame Based Dispatching Algorithm
Recall that “regular” implies the absence of coupled tasks. As indicated before, the

scan window X can be expressed in terms of scan frames. Scan frame A.; is the set
{Tei, ... Teay—1), and B = AU A U ... U A, where [, indicates the number of re-

served processors. When scanning the priority list, assume that task T, is the next ready

12

task checked for safe starting. Checking for tasks vulnerable to instability, it can be shown

that the only scan frames that need to be investigated are those which contain tasks T,

std

54 overlap time-wise with the execution of usurper task 7T, on

whose SGC starting time s

the NGC, assuming T, were started [13]. This means that scan frames A.; with Széd greater
than the maximal finishing time of T}, cannot be vulnerable to instability caused by starting
T,. Thus, a scan window algorithm has to reserve processors only for the frames whose
associated T,; start at or before the maximum finishing time of 7)., since the safety of the

succeeding frames follows.

Regular-Algorithm The following regular algorithm is a slightly modified version of
the E-Algorithm in [13, 14] and will be the basis for general frame based dispatching with
coupled tasks.

1. Find the first ready task 7.

2. Find the last task T, with index v < = whose standard starting time overlaps with
the hypothetical execution of T, and find its scan frame A.;.

3. Then, T, can be safely started if k£ idle processors can be reserved for tasks from

(Ao U...UALL.

4.2.2 General Frame Based Dispatching Algorithm

To include coupled tasks, the Regular-Algorithm needs to be modified in order to identify
tasks from T? and to account for conditions C1 and C2. Let T¢ be the coupled child

corresponding to parent TP?. Furthermore, let ¢, denote the time of the scan, and let §§td
denote the standard time T would have to be promoted to in order to satisfy the coupling,
: ystd __ _std std

ie 8% = s — (st —t,

the SGC. This includes tasks already finished. Let 2/(?) indicate the number of unmarked
tasks on the SGC at time ¢. Furthermore, let £(¢) be the number of tasks 7T; that are

). Next, assume that all tasks that have been started are marked on

currently executing on a processor for which the maximal finishing times f™** > ¢. Now,

the following Feasibility Conditions can be formulated:

13

FCL: T¢ can be promoted into a vacant slot on the SGC for the entire Feasibility Interval

_ [zstd zstd maxr
FI] — [S] 73]‘ ‘I‘C]]

FC2: For each fan-out task T, whose standard starting time is in FI;, the number of
processors assigned to unmarked tasks plus the number of processors occupied by
currently executing tasks T; with 7 in FI; is less than or equal to M — 1 at s

Formally, for every fan-out task 7T,, with s:!* in FI;:

U(si) + E(s1) < M- 1. (1)

General-Algorithm Now the General Algorithm, as an extension of the Regular-Algorithm
utilizing the Feasibility Conditions, can be stated:

1. Find the first ready task 7.

2. Find the last task T, with index v < = whose SGC starting time overlaps with the

hypothetical execution of T, and find its scan frame A.;.

3. If T, € T? then T, can be safely started if k£ idle processors can be reserved for tasks
from {A, U...U A} and feasibility conditions FC1 and FC2 are met.

4. Else, T, can be safely started if & idle processors can be reserved for tasks from

(A U...UAL)

It should be noted that in order to allow multiple child tasks to be coupled to a single
parent task one only has to change the algorithm to account for the promotion of addi-
tional children. This will require a modification of the Feasibility Conditions to reflect the

additional promotions and the number of processors in inequality (1).

4.3 Proof of Stability

The Regular-Algorithm has been proven stable for regular workloads in [13]. In order to
prove stability of the General-Algorithms in the presence of coupled tasks, it needs to be

shown that the inclusion of the Feasibility Conditions avoids instability. First we restate a

14

lemma from [15] that shows that only tasks whose standard starting times overlap with the
execution of usurper task 7T, on the NGC, need to be considered as potentially vulnerable

tasks in order to guarantee stability.

Lemma 1 Assume that a usurper task T, has started at time s, and define f™*% = s,+ct4,

No task T, with s5'¢ > {7 can become unstable as a result of starting T,.

Proof: See [15, Lemma 3]. U

Theorem 1 A task T, can be safely promoted on the SGC from s to some 35 with
351 < 581 if Feasibility Conditions FC1 and FC2 hold.

Proof: If FC1 does not hold, then at some time in the Feasibility Interval FI, = [354, 55t 1

X Y X

"] processor contention can occur. This will lead to instability, unless fan-in can be

guaranteed. However, the cost of guaranteeing fan-in is exponential in the number of

tasks [13] and thus not real-time feasible. Therefore assume that FC1 holds.

In order to prove the necessity of FC2, we first show that only tasks in FI, need to be
considered. For a given real task T, three General Instability Conditions (GIC1 - GIC3)
have been derived that are both necessary and sufficient for T, to be unstable [10]. GIC1 in-
dicates that priority inversion is a necessary condition for instability to occur (see also [18]).
However, for T}, with s5'? < 3%!? the promotion of 7, does not constitute a priority inversion.

This implies invulnerability of T, from GICI.

For tasks in T, with starting times after FI,, i.e. for T, with s%¢ > 554 4 ¢™e¥ promotion
of T, does constitute a priority inversion. However, the effect of a usurper task is limited
to those tasks overlapping on the SGC with the execution of the usurper. Invulnerability

of tasks T, with standard starting times beyond FI,. follows from Lemma 1.

Next it will be shown that tasks T, with starting times in FI, are invulnerable if FC2
holds. Let T¥'= denote the set of tasks T, with Sztd in FI,. Now assume that FC2 is true.
Let fs be the time of the last fork into T<, to occur at or before ready time r,. General

Instability Condition GIC3 states that for T, to be unstable, there must exist no time in

std
v

the interval [fy, s3] at which all ready real tasks in T<, are running. Finishing of T},

15

causes the fan-out for fan-out tasks T,,. However, according to inequality (1) in FC2, at

std

each s

there is a processor available for each unstarted task, independent of currently

executing tasks. Thus at time 53¢ latest, a processor is available for each task in T.,, and

GIC3 cannot hold. Tasks T, with s +* s for some T,,; with Sfjfl in FI,., need not be

v! wi 9
considered, since no new fan-out is introduced, and tasks in T, are safe by assumption.

d

Theorem 2 The General-Algorithm is stable.

Proof: In the absence of coupled tasks, the General-Algorithm degenerates into the
Regular-Algorithm which has been proven stable [13, Theorem 5]. Including coupled tasks
adds the child task promotion issue. However, from Theorem 1 instability can not result

from a promotion if the Feasibility Conditions FC1 and FC2 hold. O

5 Summary

This paper addressed the problem of instability and infeasibility of coupled tasks in non-
preemptive priority list scheduling. Task couplings are assumed to consist of task pairs,
where parent tasks are coupled to child tasks by fixed coupling delays. The task system
allows for regular tasks, coupled tasks and phantom tasks. Task coupling is implemented

using mechanisms of the latter type, so-called enforcer phantom tasks.

When task durations are specified with minimum and maximum run-times, early starting
of parent tasks in a coupled pair can result in scheduling infeasibility and thus instability
at run-time. A trivial method is presented that prevents run-time infeasibility. However,
this method makes the response time to coupled tasks always maximal, whereas the rest
of the workload compresses as typically actual task durations are much smaller than their
standard durations. In order to allow the early starting of coupled tasks, child tasks in the
coupled pair have to be promoted, i.e. shifted left on the Standard Gantt Chart (SGC).
General Feasibility Conditions have been defined that are sufficient for promoting a task

on the SGC.

16

A general run-time stabilization algorithm is presented that implements scan-window dis-

patching in the presence of coupled tasks. The algorithm is based on scan-frames and uses

the General Feasibility Conditions to allow stable early dispatching of coupled tasks.

References

1]

Butler, R.W., and B.L. DiVito, “Formal Design and Verification of a Reliable Comput-
ing Platform for Real-Time Control”, NASA Technical Memorandum 104196, Phase
2 Results, Jan 1992.

Carpenter, K., et al., “ARINC 659 Scheduling: Problem Definition”, Proc. IEEE Real-
Time Systems Symposium, pp. 165-169, 1994.

Chan, Mee Yee, and Francis Y.L. Chin, “General Schedulers for the Pinwheel Prob-
lem Based on Double-Integer Reduction”, IEEE Transactions on Computers., Vol. 41,
No. 6, pp. 755-768, June 1992.

Gerber, Richard, S. Hong, and M. Saksena, “Guaranteeing Real-Time Requirements
With Resource-Based Calibration of Periodic Processes”, IEEFE Transactions on Soft-
ware Engineering, Vol. 21, No. 7, pp. 579-592, July 1995.

Gerber, Richard, D. Kang, S. Hong, and M. Saksena, “End-to-End Design of Real-
Time Systems”, UMD Technical Report CS-TR-3476, UMIACS TR 95-61, May 1995.

Ha, Rhan, and Jane .W.S. Liu, “Validating Timing Constraints in Multiprocessor
and Distributed Real-Time Systems”, Proc. IEEE 14" International Conference on
Distributed Computing Systems, 1994.

Han Ching-Chih, and K.J., Lin, “Scheduling Distance-Constrained Real-Time Tasks”,
IEEFE Real-Time Systems Sympostum, pp. 300-308, 1992.

Hsueh, Chih-wen, Kwei-Jay Lin, and Nong Fan, “Distributed Pinwheel Scheduling with
End-to-End Timing Constraints”, Proc. 16" IEEE Real-Time Systems Symposium,
pp- 172-181, 1995.

17

[9]

[10]

[11]

[12]

[13]

[14]

[16]

Kieckhafer, R.M., et al, “The MAFT Architecture for Distributed Fault-Tolerance”,
IEEFE Trans. Computers, V. C-37, No. 4, pp. 398-405, April, 1988.

Kieckhafer, R.M., and J.S. Deogun, “ On the Stability of List Scheduling in Real-Time
Multiprocessor Systems”, UNL, Dept. of Comp. Sci., Report #99, Feb 1990.

Kieckhafer R.M, J.S. Deogun and A.W. Krings, “The Performance of Inherently Stable
Multiprocessor List Schedulers”, UNL, Dept. of Comp. Sci., Report Series UNL-CSE-
92-009, May 1992.

Krings, A.W., and R.M. Kieckhafer, “Inherently Stable Priority List Scheduling in Sys-
tems with External Delays 7, Proc. Twenty-Sizth Annual Hawait International Con-

ference on System Sciences, Vol. 2, pp. 622-631, 1993.

Krings, A.W., “Inherently Stable Priority List Scheduling in an Extended Scheduling
Environment”, PhD Thesis, Dept. of Comp. Sci., Univ. of Nebraska, Lincoln, 1993.

Krings, A.W., R. Kieckhafer, and J. Deogun, “Inherently Stable Real-Time Priority
List Dispatchers”, IEEE Parallel & Distributed Technology, pp. 49-59, Winter 1994.

Krings, A.W., and M.H. Azadmanesh, Resource Reclaiming in Hard Real-Time Sys-
tems with Static and Dynamic Workloads, Proc. 30th Hawaii International Conference

on System Science, IEEE Computer Society Press, Vol I, pp. 616-625, 1997.

Liu, Jane W.5., and Rhan Ha, “Efficient Methods for Validating Timing Constraints
in Multiprocessor and Distributed Systems”, Proc. Proc. 4% Systems Reengineering

Technology Workshop, 1994.

Liu, JJW.S., and Rhan Ha, “Efficient Methods for Validating Timing Constraints”,
Advances in Real-Time Systems, Prentice Hall, 1995.

Manacher, G.K., “Production and Stabilization of Real-Time Task Schedules,” JACM,
Vol. 14, No. 3, pp. 439-465, July 1967.

McElvaney, M.C., et. al., “Guaranteeing Task Deadlines for Fault-Tolerant Workloads
with Conditional Branches”, Journal of Real-Time Systems, Vol. 3, No. 3, pp. 275-305,
Sep 1991.

18

[20]

[21]

[22]

23]

[24]

Natale, Marco Di, and J.A. Stankovic, “Dynamic End-to-end Guarantees in Dis-
tributed Real Time Systems”, Proc. IEEE Real-Time Systems Symposium, pp. 216-
227, 1994.

K.L. Paap, M. Dehlwisch, B. Klaassen, “GMD-5Snake: A Semi-Autonomous Snake-like
Robot”, Distributed Autonomous Robotic Systems 2, Springer-Verlag, Tokio, 1996.

Saksena, Manas Chandra, “Parametric Scheduling for Hard Real-Time Systems”, PhD
Thesis, Department of Computer Science, University of Maryland, 1993.

Shen, C., et al, “Resource Reclaiming in Real-Time”, Proc. Sizth Real-Time Systems
Symposium, pp. 41-50, Dec 1990.

Sun, Jun, and Jane W.S. Liu, “Bounding the End-to-End Response Times of Tasks
in a Distributed Real-Time System Using the Direct Synchronization Protocol”, Tech.
Report UITUCDCS-R-96-1949, University of Illinois at Urbana-Champaign, 1996.

19

Axel W. Krings received the Dipl.Ing. in Electrical Engineering from the FH-Aachen,
Germany, in 1982, and his MS and PhD degrees in Computer Science from the University
of Nebraska - Lincoln, in 1991 and 1993, respectively. He is with the Computer Science
Department at the University of Idaho, and is a member of the Microelectronics Research
and Communications Institute (MRC) and the Center for Secure and Dependable Software
(CSDS). Previous appointments include the Technical University of Clausthal, Germany.
His research interests include Real-Time Scheduling, Distributed Systems, Fault-Tolerant

Systems, Computer Networks, and Network Security.

M.H. Azadmanesh received the BS (1976) degree in Cost Accounting, and the MS (1982)
and PhD (1993) degrees in Computer Science from lowa State University and University of
Nebraska-Lincoln respectively. He is currently with the Department of Computer Science
at the University of Nebraska at Omaha. His research interests include Fault-Tolerant

Distributed Systems, Reliability Modeling, Network Communication, and Scheduling.

20

