Resource Reclaiming in Hard Real-Time Systems with Static and
Dynamic Workloads

A.W. Krings
Computer Science Dept.
University of Idaho
krings@cs.uidaho.edu

Abstract

This paper addresses resource reclaiming in the con-
text of non-preemptive priority list scheduling for hard
real-time systems. Such scheduling is inherently suscep-
tible to multiprocessor timing anomalies. We present
low overhead run-time stabilization methods for a gen-
eral tasking model that allows phantom tasks as a mech-
anism to model processor external events.

A family of scheduling algorithms is defined, that
gquarantees run-time stabilization for systems consist-
ing of tasks with hard and soft deadlines. The later,
r.e. soft tasks, may arrive dynamically. Stabilization
1s addressed in the context of dynamic and static task
to processor allocation. Previous stabilization meth-
ods, focused on apriori stabilization for static workloads
with dynamic task to processor allocation, thus cannot
support this general scheduling model.

By taking advantage of run-time information, the
stabilization algorithms use the scan-window approach
to prevent instability from occurring. Mechanisms are
introduced that explicitly control the run-time behav-
tor of tasks with hard deadlines. As a consequence,
processor resources become available that can be used
to tmprove processor utilization and response time of
soft tasks. The resulting scan algorithms are intended
for real world applications where low run-time overhead
and a realistic task model are needed.

1 Introduction

The increasing computational complexity of many
control applications promotes the use of multiproces-
sor environments. The application tasks may be dis-
tributed over multiple processors to take advantage of
parallelism of the workload, or as a redundancy issue
for fault-tolerant reasons. Many applications operate
in hard real-time safety critical environments, where
the missing of deadlines could have catastrophic re-
sults, i.e. loss of human lives, environmental damage

M.H. Azadmanesh
Computer Science Dept.
University of Nebraska at Omaha
azad@cmit.unomaha.edu

or unacceptable cost. The algorithms scheduling the
workload, typically represented by a task graph, must
be provably correct and free of side effects.

Most scheduling methods can be partitioned into
preemptive and non-preemptive approaches. Whereas
preemptive scheduling generally offers a greater degree
of flexibility and has potential for higher resource uti-
lization, it proves to be hard, if not impossible, to fully
predict the non-deterministic effects and overhead of
context switching [1, 8, 9].

Non-preemptive static priority list scheduling has
been selected as a simple, low-overhead approach
in systems like the Reliable Computing Platform
(RCP) [1], the Multicomputer Architecture for Fault
Tolerance (MAFT) [10], the Spring Kernel [23], or spe-
cific applications like turbojet engine control [20]. How-
ever, list scheduling is vulnerable to timing anoma-
lies [7], where the reduction in task execution times of
one or more tasks can cause deadlines to be missed.
Task durations may generally not be assumed con-
stant, as they are directly affected by memory manage-
ment, communication overhead, channel contention, as
well as asynchronousy of autonomous input or sensor
units [17]. Several approaches have been proposed to
avoid timing anomalies. Whereas aprior: stabilization
is based on Manacher’s algorithm [18] which only sup-
ports static workloads, a family of run-time stabiliza-
tion algorithms has been introduced [12, 14] that is less
restrictive than previously known stabilization meth-
ods.

The individual task execution times may vary be-
tween minimum and maximum values. Even though
worst case task duration must be considered, the mean
run-time durations are often one order of magnitude
lower [2]. At run-time, this effect is generally com-
pounding. The resulting available resources are the
subject of many recent studies on resource reclaiming.
Slack-time is used in preemptive and non-preemptive
environments to increase fault-tolerance [6], to mini-
mize the response time of soft workloads [16], or to

jointly schedule hybrid workloads consisting of com-
binations of periodic, aperiodic, sporadic or adaptive
tasks with hard and soft deadlines [3, 4, 5, 22, 24].

This paper focuses on resource reclaiming in the
context of run-time stabilization for systems employ-
ing workloads consisting of a static hard real-time core
workload, supplemented by dynamically arriving tasks.
The results are presented for dynamic task to proces-
sor allocation and are expanded for the more restrictive
case of static task allocation. A framework is developed
that allows stable dispatching of hybrid workloads con-
sisting of static tasks with hard deadlines and dynam-
ically arriving tasks with soft deadlines. The set of
hard tasks typically constitutes the control workload of
the real-time application, whereas soft tasks are non-
critical, possibly dynamically arriving tasks with soft
deadlines. Mixed task scheduling models have been
the subject of many algorithms inspired by slack steal-
ing [16], including [3, 4, 5, 24]. For non-preemptive ap-
plications, reclaiming has been considered in dynamic
multiprocessor applications [22] in conjunction with the
Spring Project [23], where reclaiming is considered in
the context of priority inversions called non-passing and
passing. Our approach has no restrictions on priority
inversions and is purely run-time dependent. Further-
more, in contrast to [22] it allows reclaiming with con-
stant overhead in site of extended passing.

Some applications may not benefit from early fin-
ishing times of the hard workload and prioritize early
starting times of soft tasks instead. The problem of
minimizing the response time of soft aperiodic tasks,
while guaranteeing deadlines of hard workloads, has
been explored for preemptive scheduling in [16]. Mech-
anisms based on special phantom tasks are presented to
artificially delay and control the run-time behavior of
hard tasks. The resulting idle times are then reclaimed
by allowing safe priority inversions and slack-time re-
claiming. Several provably stable run-time dispatching
algorithms are presented allowing resource reclaiming
of varying complexity. Even though derived for dy-
namic task allocation, they illustrate strict limitations
for reclaiming in static allocation models. A task graph
transformation based on phantom tasks is used to allow
distributed static dispatching.

This paper is a continuum to the recent results
in run-time stabilization and presents a comprehen-
sive framework which is based on the list scheduling
paradigm. It is more general than traditional list sched-
ulers and thus opens up a larger application domain.
Specifically, it allows run-time stabilization in hard
real-time systems implementing (1) static and dynamic
workloads, (2) dynamic or static task to processor al-
location, and (3) mechanisms to implement slack-time

tuning, i.e. to control the degree of resource reclaim-
ing. Motivation for slack-time reclaiming is to increase
processor utilization and to increase response time to
the dynamic workload. Section 2 describes the basic
task model and gives preliminary definitions. Section 3
addresses basic run-time stabilization issues and mech-
anisms to selectively force slack-time. In Section 4, safe
run-time dispatching algorithms for dynamic task allo-
cation are presented. Section 5 describes the resource
reclaiming mechanisms in the context of dynamic task
allocation. Section 6 addresses dispatching with static
task allocation and its limitations. Finally, Section 7
concludes the paper with a summary and remarks on
future work.

2 Preliminaries

2.1 Task Model

A task T is the basic unit of computation, consisting
of a set of sequentially executed instructions. Associ-
ated with each task 7; is a maximum and minimum
computation time ¢**® and ¢7", release time r; at
which the task becomes ready for execution, starting
time s;, and finishing time f;. Dependencies among
tasks are defined by a partial order, resulting in a di-
rected acyclic precedence graph. Tasks are assumed to
be executed on M homogeneous processors.

In order to model events external to a processor,
non-transparent overhead or task synchronization, spe-
cial tasks called phantom tasks are defined. These tasks
are fully incorporated into the precedence graph. Al-
though they consume time, unlike real tasks, they con-
sume no resources. As a result, phantom tasks may
always be started upon becoming released.

The workload is partitioned into a static workload
called the hard task set, TH = {Ty,...,Tn:}, and dy-
namically arriving tasks called soft task set, T =
{Tni41,...,Tn}, where N’ is the number of hard tasks
and N is the total number of tasks in the system at the
present time t,, i.e. N = |TH| 4+ |T°|. Whereas N’
is fixed at design time, N is run-time dependent. The
hard task set typically constitutes the control workload
of the hard real-time application. Consequently, tasks
in TH have hard deadlines. All information about hard
tasks 1s known apriori, except for the actual task dura-
tions, which are in the interval [¢[*" ¢ma%].

Soft tasks on the other hand are considered non-
critical. They are defined at design time or may enter
the system at run-time. To reduce penalties associated
with missing soft deadlines it is desirable to minimize
their response time [16].

2.2 Terminology

The philosophy of the algorithms described in this
paper is adopted from fized priority list scheduling,
where whenever a processor becomes available, the run-
time dispatcherscans the task list from left to right, and
the first unexecuted ready task encountered in the scan
is assigned to the processor. The dispatcher is distinct
from the scheduling algorithm. Whereas the scheduler
is executed only once at design time, the dispatcher
arbitrates tasks during run-time.

A Scenario describes the schedule obtained by us-
ing a particular set of task durations. The Standard
Scenarto is the scenario in which each T; uses the max-
imum computation time ¢/**® [18]. The Gantt chart
depicting the standard scenario is called the Standard
Ganit Chart (SGC). Task deadlines of hard tasks are
their respective finishing times in the SGC. It should
be noted that the SGC is some feasible schedule, de-
fined at design time. Optimality is desirable, but not
necessary.

In a Non-Standard Scenario, tasks T; from TH? UT?
execute with ¢™" < ¢; < %%, However, at least one
task T; € TH has duration ¢; with less than its maxi-
mum computation time ¢j*", i.e. ¢; < ¢"*". The re-
sulting Gantt chart is called Non-Standard Gantt Chart
(NGO).

The dispatcher selects tasks from a list called pro-
jective list. This list is in one-to-one correspondence
with the SGC, i.e. its tasks represent the task starting
sequence of the SGC [18]. Let £# and SGC* denote
the projective list component of hard tasks T and the
SGC defined by TH respectively. Conversely, let £°
and SGC® denote the priority list component of soft
tasks T® and the portion of the SGC defined by T®
respectively. Thus the SGC consists of SGCT followed
by SGC®.

In contrast to £7, list £9 is dynamic since T is
a dynamic task set. As a result, SGC® bares no real
meaning by the definition of dynamic soft tasks, 1.e.
T* is indeterminate and must be assumed to be purely
run-time dependent. Therefore, SGC* may be seen
as any arbitrary schedule of the tasks in T® at the
time of the scan. This assumption is consistent with
the definition of soft tasks, whose deadlines are non-
critical. Soft tasks are inserted into £% according to
their priority upon arrival into the system. If they all
arrive at time ¢t = 0, the hybrid workload becomes pure
static.

Let £F denote the Extended Priority List consisting
of £ concatenated with £%,i.e. L% = £L¥ o £%. Thus
the dispatcher scans a single list that first contains all
hard tasks followed by soft tasks.

A scenario is stable if there exists no scenario in

which the finishing time of any T; € T in the NGC
exceeds its completion time on the SGC. With non-
standard computation times not known apriori, 1.e.
cmin < ¢; < €M given any task T} € T the latest
safe starting time s; is s{'¢, the starting time on the
SGC as denoted by superscript std. Thus, if s; < s§%9,
then f; < f#'?. Since stability of a task 7} is meaningful
only if 7; € TH | when addressing stability issues, the
inclusion of 7; 1n the set of hard tasks will be assumed
and will not be explicitly stated in the remainder of the
paper.

Several task sets will be used throughout the paper.
Let T.; denote the set of all tasks with indices less
than 7. Thus for any 7j in T, this means that T
1s the set of tasks which started before T; on the SGC.
In a projective list, T; contains all tasks 7} such that
Jj <i. T«;is defined as T;U{T;}. Sets Ts; and T>;
are symmetric to T; and T<; respectively. -

In a given scenario, a task T, is unstable if and
only if it is the lowest numbered task to start late, i.e.
Sy > sffd, and s; < sftd VT, € Tey. Task T, is
vulnerable to instability if there exists any scenario in
which T, is unstable.

2.3 Instability

An example of instability is shown in Figure 1. The
precedence graph contains eight hard tasks, with max-
imum durations listed next to each vertex. Task pri-
orities are defined in order of increasing start times on
the dual-processor SGC in Figure 1b. During execution
the dispatcher scans the projective list and selects the
first ready task for execution. Scheduling instability
can be observed on the NGC, where 73 is shortened by
an arbitrarily small value €. The shortened T3 finished
before Ty and Ts was then able to claim the processor
on which 75 was executed on the SGC. As a result,
both 75 and 77 started later on the NGC than they
did on the SGC.

To avoid instabilities two stabilization methods
have been proposed that can be partitioned into aprior:
and run-time stabilization.

1. In Apriori Stabilization methods, stabilization is
achieved by (1) restricting the dispatcher, i.e.
fixing the task starting sequence or task start-
ing times, or by (2) modifying the task graph
by introducing additional precedence constraints
[10, 18, 19, 21]. Potentially poor utilization for
the first and addition of many edges in the sec-
ond case have motivated the development of less
restrictive stabilization methods.

2. Run-Time Stabilization is a less restrictive stabi-
lization method, where the dispatcher limits the

/ NGC

a) Precedence Graph

PL| Ty | T,| T4 T,

P2 T3 Ts| Tg | T
2 4 6 9 11
2 4 7 9

PL| Ta| T2 Ty | Tg

2 4 7-€ 9-€ 12-€

b) T3 shortened by ¢ on the NGC

Figure 1: Example of Instability

depth of its scan into the task list in order to avoid
instabilities. This approach takes advantage of in-
formation available at run-time [13, 14].

3 Run-Time Stabilization & Slack-
Time Tuning

The first step in the chain of events possibly leading
to instability is a priority inversion by some task T,
such that s, < s; for some T; with ¢ < z [11]. Task
Ty 1s said to usurp. It 1s the responsibility of the run-
time stabilization algorithm to only allow dispatching
of such usurper tasks that cannot induce instability.

3.1 The Scan Window

When a processor finishes its current task, the tra-
ditional priority list dispatcher starts at the head of the
list, scanning the list until it finds a ready task, if one
exists. The scan window approach restricts the scan, by
limiting the scan depth to the size of the window. The
scan window X 1is this subset of unstarted real tasks
scanned by the dispatcher, i.e. ¥ = {T,,,..., 71} where
T, and T; are the first and last real tasks visible to
the dispatcher. If the number of tasks scanned is lim-
ited such that no usurper task is ever started before a
vulnerable task, stability can be enforced at run-time.

3.2 Fan-out

A fan-out occurs when a phantom task releases a
real task, or when a real task causes the release of a
second real task executing in parallel. The initiating
release is called a logical fork, since either case causes

the occupancy of one more processor, 1.e. from 0 to
1 and from 1 to 2 processors for phantom and real
forks respectively. Fan-out, caused by logical forks, is
a necessary condition for instability to occur. Several
tasks and task sets with different fan-out properties
are defined. They build the foundation of the run-time
dispatching algorithms described in Section 4.2.

3.2.1 Fan-out Tasks

A fan-out task is defined as a real task with at least
one of the following properties: (1) it is a child of an
unfinished phantom task, (2) it is descendent from an
unfinished forking task, and it started executing on the
SGC while another descendent of the same forking task
was executing on another processor.

Let Ty, be the first fan-out task and 7, the first task
in the window. On the SGC, T, was the task that occu-
pied an additional processor, i.e. T,, caused a fan-out of
1. Tt will be shown that one can safely scan up to T, .
This defines a scan window X = {T,...,Tw—1}. As-
sume that T, is the only fan-out task in the workload.
If one wants to scan past T, stability is guaranteed’
only provided there is at least one idle processor that
can be reserved to absord the possible fan-out of T, .
In general, to scan past T,,, one needs to identify addi-
tional fan-out tasks in Ty, . Let Ty1 = Ty, and define
T.,; as the " fan-out task. All T,,; are called basic
fan-out tasks, in that each T,; can cause a fan-out of
1. Note that phantom tasks cannot be fan-out tasks
since they do not consume resources.

1At this point we ignore issues of slack-time reclaiming.

3.2.2 Effective Fan-out

Let F(Ty) be a function that indicates how many ba-
sic fan-out tasks with indices less than or equal w are
overlapping on the SGC at standard starting time s5/9.
Thus F(T) is the cardinality of set {7; : T; € T<y, T;
is a fan-out task, and sf'% < s5'0 < £} A task Ty, is
said to have an effective fan-out of F(T,). Since soft
tasks are non-critical and dynamic, their fan-outs bare
no real meaning and are defined as zero.

Not every basic fan-out task contributes to an in-
crease in the effective fan-out. Assume that several
basic fan-out tasks exist such that their executions do
not overlap on the SGC, i.e. f3%4 < sfff for any T,; and
Twj, with 4 < j. It can be shown [13] that these non-
overlapping basic fan-out tasks can collectively con-
tribute only to an effective fan-out of 1. Figure 2 shows
the subgraph and the SGC of a system with two non-
overlapping basic fan-out tasks Ty,; and Ty5. Fan-out
F(Tw1) = 1 and F(Tyw2) = 1, but the effective fan-out
of {Tw1,Tw2} at any time is 1. Let T.; denote the low-

P1 Tp2 T c2
P2 Tp1 Te1 Tw2
P3 ‘ Tw1 ‘

Figure 2: Non-Overlapping Fan-out Tasks Ty,1 and Ty

est numbered basic fan-out task with F(Ty,) = . Then
Te; 1s called an effective fan-out task. T.; is thus the
first task executing in parallel with i — 1 other fan-out
tasks from T;. T¢1 is the first effective fan-out task
(F(Te1) = 1), Tea is the second (F(T.2) = 2), and so
forth. By the definition of fan-out, 7,1 = T1. Ev-
ery effective fan-out task is also a basic fan-out task,
but the reverse is not necessarily true. It should be
noted that Tg; is not necessarily the only fan-out task
with a fan-out of 7, but it is the first. As a convention,
task subscripts starting with letter e will be reserved
for effective fan-out tasks.

3.2.3 Scan Frames
The priority list can be partitioned starting with the

first unstarted task. The general priority list at the
time of the scan is (T.q, ..., Te1, .o, Te2, -y Tek, -..). Task

T.o = T, if? F(T,) = 0, otherwise T,y does not exist
and the list starts with 7T,;. T 1s the last effective fan-
out task. Positioned between T.; and T¢(;;1) are any
number of tasks 7; with effective fan-outs 0 < F(T;) <
t. These tasks, including T;, are called the Scan-Frame
of T,; and are denoted by A.;. Thus frame A,; is the
set {T%i, ..., To(it1)—1}- It will be shown that with the
knowledge of idle processors I at the time of the scan,
the scan window X can be expressed as the sequence
of frames A g, Aeq, ..., Ar_1.

3.3 Forcing Slack-Time

The slack-time of a task T; 1s the maximal time the
starting of task 7; may be postponed without causing
T; to miss its deadline. If the dispatcher should give
preference to soft tasks, yet guarantee all deadlines of
tasks in T | early release of hard tasks has to be dis-
couraged. By artificially delaying hard tasks, possibly
to their standard starting times, the slack-time of the
delayed task becomes available for so-called slack-time
reclaiming.

Phantom tasks called delay enforcement tasks (det),
can serve as delay mechanisms. Thus each hard task T;
to be delayed will be assigned a phantom task Tge(;)
which is inserted as an immediate parent into the prece-
dence graph as shown in Figure 3. Assuming all Tge(s)
are released at time ¢+ = 0, the maximum duration of

Taet(sy can be set as late as c’(?e‘:(xi) = sftd. Generally,

t=0

Figure 3: Delay Enforcement Task Tycq(;)

it will be desirable to assign delay enforcement tasks
to few selected tasks of T, in an attempt to reduce
the number of Tj.4(;)’s. Benefits of early finishing hard
tasks and response to soft tasks are in competition.
This eliminates the overly restricted case of strictly en-
forcing standard starting times of all hard tasks from
consideration. Thus an application can control the se-
lection of hard tasks T; to be delayed, through appro-
priate minimum and maximum durations CZZT(LZ.) and

CZZ%’) of the respective delay enforcement tasks Tyeq(;)-

2]:(Tu) # 0 if and only if Ty, is descended from a phantom
task.

This customization of selectively forcing slack-time is
called slack-time tuning.

It should be noted that delay enforcement tasks
are phantom tasks. As such they do not consume
any processor resources but only time. From the dis-
patcher’s point of view, they induce no overhead other
than maintaining additional precedence constraints in
the dispatcher’s data structure. This increase in prece-
dence constraints, due to delay enforcement phantom
tasks, should not be confused with additional edges in
apriori stabilization. Apriori stabilization is not capa-
ble of dealing with the concept of phantom tasks as a
general mechanism to model external events. Further-
more, scenarios may occur at run-time where no ready
task exists, but where the termination of a Tg.(;) would
release a safe task 7;. In this case, it is advantageous
to terminate Ty.s(;) to increase processor utilization.

3.4 Reclaiming Philosophy

At run-time the dispatcher selects tasks from the
extended priority list based on the scan window de-
fined on the current scan. Since deadlines must be
guaranteed for hard tasks, one could argue that soft
tasks should be dispatched solely based on slack-time
reclaiming. However, this approach is quite restrictive,
since it does not take under consideration the issues
of slack-time tuning. Furthermore, the selection of the
tasks, which will be the basis for slack-time reclaiming,
is not trivial and algorithm dependent, i.e. dispatching
a task based on the slack-time of the first hard task
in the window can become overly conservative. Two
types of resource reclaiming are considered.

1. Processor resources are reclaimed by allowing safe
priority inversions. The effects of this implicit al-
gorithmic reclaiming method increase with the so-
phistication of the scan window selection, i.e. algo-
rithms resulting in a larger safe scan window have
higher probabilities of reaching a safe ready task.

2. If no task can be found in the scan window, re-
claiming can be used strictly based on slack-time
of the task defining the size of the window.

4 Dynamic Run-Time Dispatching

Window dispatching algorithms are first shown for
dynamic task to processor allocation. In this allocation
scheme, tasks can be executed on any idle processor.
Static task allocation is discussed later in Section 6.

4.1 Dispatcher Task Selection

When using the extended priority list £, the posi-
tion of the window with respect to the junction of £#
and £° is important. Assume a task finishes and the
dispatcher scans £ via the scan window X defined by
the number of processors that can be reserved for fan-
out tasks. Let A.; denote the last scan frame of ¥ to
include tasks from £ . Furthermore, let Ts denote the
last unstarted real task in £F. At the time of the scan
several window scenarios can occur which will be the
basis for the dynamic dispatching algorithms:

1. Ts does not exist. This is the case when £ is
empty.

2. Ts ¢ A.. Tasks from TS are not visible to the
dispatcher.

3. Ts € A.;. The window includes £7.

4.2 Dynamic Dispatch Algorithms

The following four tasks, defined at the time the list
is scanned, are important in the statement of run-time
dispatchers.

1. T,: the lowest numbered real task in T that has
an unfinished phantom parent.

2. Tg: the lowest numbered real task in T# which is
also the second real child of an unfinished forking
task.

3. T,: the lowest numbered real task in T# such that

(a) T, is descended from an unfinished forking
task,

(b) on the SGC, T, started while another real
descendent of the same forking task was run-
ning.

4. Ts: (as defined previously) the highest numbered
unstarted real task in TH .

Let I be the number of idle processors at the
time of the scan (including the processor which ini-
tiated the scan). Table 1 shows run-time dispatch-
ing algorithms, where 7, denotes the first unstarted
real task in 3. The key element in the algo-
rithms is the position of Ts and the sentry tasks
Tu+I—1aTa+I—1aTc+I—1aTw+I—1a TwI; and TeI-

The most general algorithm is Algorithm 6. It is
based on the observation that given I idle processors,
one can unconditionally select tasks from the first [
scan frames [15], i.e. ¥ = Acg, ..., Ay 1) If Ts is
beyond these frames (“if-clause” of Alg’m 6), then the

| Alg’'m | if @ | then | else |
1 | é6>utT—1 S = [Ty, .. Tuss_1} | & =LF
2 §>a+I—1, where a=min[a,(u+1)] | T ={Ty, ..., Tagr-1} | T =LF
3 §>c+1—1, where ¢c = min[e, 3] S ={Ty, ... Teyr—1} | = =LF
4 6>w+1—1, where w = min[«a,] S ={Ty, .., Twrr-1} | = =LF
5 | 6> wl S =Ty, ., Tur1) | = =CF
6 |6>el S ={Ty, ..,Tor1} | ==rF

?If the sentry tasks in the algorithms do not exist, a

full scan is allowed.

Table 1: Hybrid Scan Window Dispatchers

I frames define the window ¥ = {T,, ..., Ter—1}. How-
ever, if Ts is in the I frames (“else-clause”), then a
full scan is safe, i.e. & = £F. Algorithm 1 through 5
are special cases and result in subsets of the window
defined by Algorithm 6. For a better understanding
of the motivation of the other algorithms, the reader
is referred to the derivation of dispatching algorithms
in the context of a static hard task system [14]. Due
to space restrictions stability proofs of the algorithms
are not shown but can be found in [15]. Issues of com-
plexity are discussed in [13, 15]. However, it should
be noted that run-time complexities range from O(M)
to O(N) for linear and O(logN) for heap implementa-
tions, where M and N are the number of processors
and tasks respectively. Furthermore, by bounding the
size of the window by a constant ¢, linear dispatchers

achieve O(1).

5 Reclaiming Beyond the Window

The window size of the previous algorithms is based
on the number of idle processors, and the window con-
sists of consecutive tasks of £LF and is unconditionally
safe. However, it will be shown that with the knowledge
of the maximum duration of a usurper task conditional
dispatching is possible. But first some preliminary lem-
mas are needed.

Assume that a priority inversion occurs so that a
task 7, from T, starts before 75, 1.e. s, < s, and
z > v. The Leftover Set L consists of all tasks in
T<, which have not finished by s;. Specifically, L =
{Ti € T<y : fi > sz}. Recall that M is the number of
processors.

Lemma 1 Let Mx (s5') and M$'4(s3'4) be the num-
ber of processors occupied by usurper tasks and set L at
53t respectively. A scenario can be unstable at T, only

if the number of processors available to L at s5'% is less

std

than the number of processors occupied by L at s*® on

the SGC, i.c. only if M — Mx (s319) < M3td(s3td).

Proof: See [11, Corollary 3.4]. O

The next lemma shows that all tasks in scan frame
A are unconditionally stable and are thus not affected
by any usurper task. It should be pointed out that in-
vulnerability of A,y does not necessarily imply stability
for subsequent frames.

Lemma 2 Let T, be any task in Ay at the time of
the list scan. Then T, is invulnerable to instability.

Proof: See [15, Lemma 3]. U

5.1 Impact of Usurper Task Durations

Assume an algorithm scanning
Y = Ao, Act, -, Agyo1) cannot find a ready task,
but a ready task 7 exits beyond A ;_1). It will be
shown that the only scan frames that need to be inves-
tigated for vulnerability are those which contain tasks
T, whose SGCH starting time s:*? overlap time-wise
with the execution of T, on the NGC, assuming 7T
were started. This means that scan frames A.; with
sgjt-d greater than the maximal finishing time of T}, need
not be considered.

Lemma 3 Assume a usurper task T, has started at
time sg, and define f'%° = sy + ¢, Then no task
T, € TH with s5'¢ > fm9 can become unstable as a
result of starting T .

Proof: Assume T, is any task in £ with s$!¢ > fmaz,
i.e. T, is any hard task whose standard starting time
does not overlap time-wise with the execution of T, on
the NGC. Recall that an unstable task by definition is
the lowest numbered task to start late. Therefore as-
sume all T; € T, are on time. Lemma 1 states that T,

i1s unstable only if the number of processors available
to L at s$!? is less than the number of processors oc-
cupied by L at 3! on the SGC. If T, had not started,
T, would be stable and thus at s'¢, by Lemma 1,
M — Mx(s5t?) > M3'(s5'?). However in the presence
of T, we still have M — Mx(s3!?) > M$td(s5!?) since
fmar < gstd je. T, has finished and thus Mx(s:!9)
cannot increase. Thus T, has no impact on the num-
ber of processors available to L at s3'¢ and T, is stable
by Lemma 1. T, € T® need not be considered by the
definition of soft tasks. O

The implication of Lemma 3 is that a soft task T
may be started based on its maximum execution time.
Then any task T, may be safely started if each scan
frame overlapping with the maximal execution of T} is
guaranteed its reserved processors.

5.2 Slack-Time Reclaiming

The slack-time of a task T,, denoted by S(Ty), is
defined at ¢, as S(T,) = s3!9 —¢,,. Thus it is the max-
imal time the starting of task 7, may be postponed
without causing T, to miss its deadline. The starting
of a task T, € Ty, is said to be slack-time safe with
respect to Ty, if <% < 8(T,). In general, by Lemma 3,
any task T}, from T, can be started if ¢3¢ < S(Ty). If
a scan window algorithm fails to find a ready task in its
maximal window, the slack time argument can be used
to start a task T, from beyond the window. The re-
claimable slack-time available, however, depends upon
the task 7, on which it is defined. Intuition might
prompt us to use the slack-time of the first task in the
scan window, or perhaps the first fan-out task T1.
However, since slack-time is defined by the SGC start-
ing times, i.e. s:'¢ — ¢, it is desirable to find the T,
with the largest numbered index, thus resulting in the
largest slack-time.

Finding 7, follows from a simple observation about
scan frames, as will be shown using Algorithm 6. As-
sume that Algorithm 6 could not find a ready task in its
maximal unconditional window ¥ = Ao, ..., A 1_1),
and 75 € X. Then the first task beyond the win-
dow vulnerable to instability is T.;. A usurper task
T: € Ts.s can be started if c¢5'¢ < S(T.1). Ter is the
largest numbered task on which slack time reclaiming
can be based. The following theorem generalizes slack-
time reclaiming.

Theorem 1 Assume T is not in the safe window X =
Aco, ..., Ag(i—1) and no ready task exisis in X. Then a
task Ty from beyond the window can be safely started if
C;td < S(Tei)‘

Proof: Assume priority inversion by 7T} with ¢$'¢ <
S(T.;) has occurred. Let T, be any task in T, NT.

Tasks in T® need not be considered by the definition
of soft tasks. No 7, in T..; can be unstable, since
the window is safe by assumption. Therefore let T, be
in Ty N TH. Since fre® ig less than sgzd, T, must
finish before any T, started on the SGC. Then stability
of all 7, in T« follows immediately from Lemma 3,
which states that no task T, with s3'¢ > f79% can be
unstable. O

The next theorem shows that, based on a single
sentry task, all window dispatchers presented so far
can be extended to include slack-time safe ready tasks
beyond the scan window.

Theorem 2 If scan window algorithms 1 though 6 faul
to find a ready task in their maxzimal unconditional scan
window with Ts & X, then a ready task Ty from beyond
the scan window can be safely started if ¢! < S(Ty).
The sentry tasks Ty for each algorithm are:

Algorithm 1 2 3
Sentry Task Tu+(1_1) Ta+(1_1) Tc+(1_1)
Algorithm 4 5 6
Sentry Task || Tyi1-1) Twr Ter

Proof: The condition 75 € X exists, since oth-
erwise ¥ = £F and with a full scan no ready tasks
would be in the system. For Algorithm 6, the first task
beyond the maximal window is 7.;. Then starting a
usurper T, with c;td < 8(Ter) is safe by Theorem 1.
Now make the following observations [15] about the
relative values of u,a, ¢, w,wl and el.

u<a<c<w<wl<Lel

ut+(I-1) < a+(I-1) < e+(I-1) < wH(I-1) < wl < el.

Thus the scan windows of all algorithms are subsets of
the scan window of Algorithm 6, which is stable. O

6 Static Run-Time Dispatching

In the previous section task to processor allocation
was considered dynamic. However, some hard real-time
environments do not allow such allocation, and tasks
are allocated statically to processors at design time.
The motivation for this can be the use of heterogeneous
processors, i.e. special purpose processors, or the need
for keeping data local to avoid the overhead involved
in migrating possibly large sets of data to other pro-
Ccessors.

In static allocation it is assumed that each proces-
sor is assigned a set of tasks, i.e. the tasks associated
with the processors on the SGC. Furthermore, dy-
namically arriving tasks may be assigned to specific

processors at tun-time. Each processor P; maintains
its own local extended priority list £F, composed of
L7 and £, which is scanned upon becoming idle.

The workload needs to be statically assigned to pro-
cessors. Let G(T,E) denote the task graph of the
global workload with task set T and edge set E de-
fined by the precedence constraints. Local workloads
G; at Processor P; are derived as follows:

1. Generate G; from G(T,E) by substituting each
real task 7; in T not assigned to processor P; by
a phantom task TJP with equal task duration.

2. Any Tp not affecting the local workload can be
ehmlnated by recursively removing all tasks Tp
which are leafs, i.e. Tp with no descendents.

Figure 4 demonstrates the procedure using the sam-
ple workload of Figure 1, assuming that {7}, Ty, T4, T7}
and {T3,Ts, Ts, Tz} are assigned to processor P; and P
respectively. G and Gg result from procedure step 1,
where T? are shaded. Task reductions of step 2 are in-
dicated by dotted lines. The implications of the trans-

S e &y
dpo=ade €509

Figure 4: Task Graph Transformation

formation is that when a processor P; becomes idle, the
first task in its associated list £F is either ready or de-
pending on an unfinished phantom task. Thus for static
task allocation, all dispatching attempts degenerate to
Algorithm 1 using I = 1, since no reservable processors
exist. Any resource reclaiming must be strictly based
on the slack-time of 7;,. The result is formalized in
Theorem 3.

Theorem 3 In static task allocation all dispatching
attempts degenerate to Algorithm 1, with I = 1.

Proof: First consider the case § > u, i.e. T, € TH.
If T;, is released it can be dispatched. Therefore as-
sume T, is not released. T, must be depending on an
unfinished task not local to the processor represented
by a phantom task, or a local phantom task. Thus by
definition, 73 is a fan-out task, i.e. T, = T,,. With
no reservable processors this is the scenario of Algo-
rithm 4 with T = 1,1.e. X ={Ty, ..., Twyr-1} = {Tu},

which under the scenario is indistinguishable from Al-
gorithm 1. The case § < u implies that Ts does not
exist, i.e. only unstarted soft tasks remain, which by
definition have soft deadlines. U

Any dispatching from beyond the window must be
based on the slack-time of T3, i.e. a task T in T+,
can be safely started only if s7** < §(Ty,).

7 Summary

This paper investigated resource reclaiming in hard
real-time environments comprising of a hard workload
supplemented by soft workloads. Whereas the first set
is static and has hard deadlines, the second set is dy-
namic with soft deadlines. The goal was to allow soft
tasks to execute with higher priority, as long as hard
task deadlines are guaranteed. This makes it possible
to decrease response time of soft tasks.

The scheduling environment is based on low over-
head static non-preemptive list scheduling. However,
a scan window approach was introduced that expands
the scheduling model, allowing more flexibility in ex-
ecuting soft tasks, i.e. the resulting dispatchers allow
dynamic task arrival of soft tasks.

An extended task model included phantom tasks as
a mechanism for controlling run-time behaviors. Under
this model delay enforcement phantom tasks were de-
fined that allow for the controlled delay of selected hard
tasks, thus implicitly controlling their release times and
thereby forcing slack-time. To implement effective re-
source reclaiming, the dispatchers allow safe priority
inversions and slack-time reclaiming based on sentry
tasks specified for each algorithm. With respect to
dynamic task to processor allocation, the result was
a spectrum of provably stable dispatching algorithms
with varying run-time complexities. Dispatching using
static task allocation was reduced to a special case of
dynamic dispatching in which all efforts degraded to
Algorithm 1.

Current research focuses on expanding the task sys-
tem to include coupled tasks. Such systems are more
complex, since in addition to stabilization the issue of
run-time infeasibility needs to be addressed. However,
more theoretical groundwork is needed, as coupling
constraints need to be considered in the development
of conditions necessary and sufficient for instability to
occur.

References

[1] Butler, R.W., and B.L. DiVito, “Formal Design
and Verification of a Reliable Computing Platform

(3]

[5]

[8]

[10]

[11]

[12]

for Real-Time Control”, NASA Tech. Memoran-
dum 104196, Phase 2 Results, Jan 1992.

Carpenter, K., et al., “ARINC 659 Scheduling:
Problem Definition”, Proc. IEFE Real-Time Sys-
tems Symposium, pp. 165-169, 1994.

Davis. R.I., K.W. Tinedell, and A. Burns,
“Scheduling Slack Time in Fixed Priority Preemp-
tive Systems”, IEEFE Real-Time Systems Sympo-
stum, pp. 222-231, 1993.

Davis. R.I., and A. Wellings, “Dual Priority
Scheduling”, IEEE 16'* Real-Time Systems Sym-
postum, pp. 100-109, 1995.

Gerhard Fohler, “Joint Scheduling of Distributed
Complex Periodic and Hard Aperiodic Tasks in
Statically Scheduled Systems”, IEEE 16" Real-
Time Systems Symposium, pp. 152,161, 1995.

Ghosh, Sunondo, et al., “Enhancing Real-
Time Schedules to Tolerate Transient Faults”,
Proc. IEEE 16" Real-Time Systems Symposium,
pp- 120-129, 1995.

Graham R.L.; “Bounds on Multiprocessor Timing
Anomalies”, STAM J. Appl. Math., Vol. 17, No. 2,
pp. 416-429, Mar 1969.

Hwu, Wen-mei W., and T.M Conte, “The Sus-
ceptibility of Programs to Context Switching”,
IFFE Transactions on Computers., Vol. 43, No. 9,
pp. 994-1003, Sep. 1994.

Jeffay, K., et al, “On Non-Preemptive Scheduling
of Periodic and Sporadic Tasks”, IEEFE Real-Time
Systems Symposium, pp. 129-139, 1991.

Kieckhafer, R.M., et al, “The MAFT Archi-
tecture for Distributed Fault-Tolerance”, IEEFE
Trans. Computers, V. C-37, No. 4, pp. 398-405,
April, 1988.

Kieckhafer R.M, J.S. Deogun and A.W. Krings,
“The Performance of Inherently Stable Multipro-
cessor List Schedulers”, Univ. of Nebraska — Lin-
coln, Dept. of Comp. Sci., Report Series UNL-
CSE-92-009, May 1992.

Krings, A.W., and R.M. Kieckhafer, “Inherently
Stable Priority List Scheduling in Systems with
External Delays 7, Proc. Twenty-Sizth Annual
Hawan International Conference on System Sci-

ences, Vol. 2, pp. 622-631, 1993.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Krings, A.W., “Inherently Stable Priority List
Scheduling in an Extended Scheduling Environ-
ment”, PhD Thesis, Dept. of Comp. Sci., Univ. of
Nebraska, Lincoln, 1993.

Krings, A.W., R. Kieckhafer, and J. Deogun,
“Inherently Stable Real-Time Priority List Dis-
patchers”, IEFEFE Parallel & Distributed Technol-
ogy, pp- 49-59, Winter 1994.

Krings, A.W., and M.H. Azadmanesh, Hybrid Dis-
patching for Hard Real-Time Systems with Fized
and Sporadic Workloads, Univ. of Idaho, Dept. of
Comp. Sci., Report CS-96-01, Feb. 1996.

Lehoczky, J.P., and Sandra Ramos-Thuel, “An
Optimal Algorithm for Scheduling Soft-Aperiodic
Tasks in Fixed-Priority Preemptive Systems”,
IEFEE Real-Time Systems Symposium, pp. 110-
123, 1992.

Sung-Soo Lim, et al., “An Accurate Worst Case
Timing Analysis Technique for RISC Processors”,
Proc. IEEE 15*" Real-Time Systems Symposium,
pp- 97-108, 1994.

Manacher, G.K., “Production and Stabilization
of Real-Time Task Schedules,” JACM, Vol. 14,
No. 3, July 1967.

McElvaney, M.C., et. al., “Guaranteeing Task
Deadlines for Fault-Tolerant Workloads with Con-
ditional Branches”, Journal of Real-Time Sys-
tems, Vol. 3, No. 3, Sep 1991.

Shaffer, P.L., “A Multiprocessor Implementation
of Real-Time Control for a Turbojet Engine”,
IEEE Control Systems Magazine, Vol. 10, No. 4,
pp- 38-42, June 1990.

Shen, C., et al, “Resource Reclaiming in Real-
Time”, Proc. Swzth Real-Time Systems Sympo-
stum, pp. 41-50, Dec 1990.

Shen, C., et al, “Resource Reclaiming in Multipro-
cessor Real-Time Systems”, IFEE Transactions
on Parallel and Distributed Systems, Vol. 4, No. 4,
pp. 382-397, Apr 1993.

Stankovic, J.A., and Ramamritham, K., “The De-
sign of the Spring Kernel” |, IEFE Proc. of the Real-
Time Systems Symposium, Dec 1987.

Thuel, S.R., and J.P. Lehoczky, “Algorithms
for Scheduling Hard Aperiodic Tasks in Fixed-
Priority Systems using Slack Stealing”, TEFFE
Real-Time Systems Symposium, pp. 22-33, 1994.

