The Architecture of a Reliable Software Monitoring System for Embedded Software Systems

John Munson, Axel Krings, Robert Hiromoto
Computer Science Department
University of Idaho
Moscow, ID 83833-1010
{jmunson, krings, hiromoto } @cs.uidaho.edu

Abstract -- We develop the notion of a measurement-based methodology for embedded software systems to ensure properties
of reliability, survivability and security, not only under benign faults but under malicious and hazardous conditions as well.
The driving force is the need to develop a dynamic run-time monitoring system for use in these embedded mission critical
systems. These systems must run reliably, must be secure and they must fail gracefully. That is, they must continue operating
in the face of the departures from their nominal operating scenarios, the failure of one or more system components due to
normal hardware and software faults, as well as malicious acts. To insure the integrity of embedded software systems, the
activity of these systems must be monitored as they operate. For each of these systems, it is possible to establish a very
succinct representation of nominal system activity. Furthermore, it is possible to detect departures from the nominal
operating scenario in a timely fashion. Such departure may be due to various circumstances, e.g., an assault from an outside
agent, thus forcing the system to operate in an off-nominal environment for which it was neither tested nor certified, or a
hardware/software component that has ceased to operate in a nominal fashion.

A well-designed system will have the property of graceful degradation. It must continue to run even though some of
the functionality may have been lost. This involves the intelligent remapping of system functions. Those functions that are
impacted by the failure of a system component must be identified and isolated. Thus, a system must be designed so that its
basic operations may be remapped onto system components still operational. That is, the mission objectives of the software
must be reassessed in terms of the current operational capabilities of the software system. By integrating the mechanisms to
support observation and detection directly into the design methodology, we propose to shift away from the currently applied
paradigm of addressing reliability, security and survivability in an add-on fashion at the end of the software development
process. Rather, the integrity monitoring ability will be integrated into the overall architecture of the software system. The
measurement and control methodology developed under this research program will readily migrate into hardware, leading to
the development of new hardware architecture with built-in survivability, security and reliability attributes.

I. INTRODUCTION

The principal objective of this paper is to
articulate a methodology for the design of high-
confidence embedded systems. These systems must run
reliably, must be secure and must fail gracefully. They
must continue operating in the face of a failure of one or
more system components, may it result from normal
hardware and software faults as well as malicious act like
hacking, virus or Trojans. Embedded systems integrate
both hardware and software components that form a self-
consistent system that is expected to function without
human intervention. The design challenge is to develop
systems that are self-aware and capable of monitoring
their components during program execution. Our
approach to the design of mission-critical embedded
systems that draws upon the advances made in the four
disciplines of software measurements, survivable systems,
system security, and reconfigurable system architectures.
A hierarchical embedded system approach will be outline
to address the functional topological organization of the
system to withstand adverse interruptions; to remap
essential system’s activities for survivability; to detect
damages or failures within a sensor-networking
framework; and to develop flexible software/hardware
reconfiguration policies.

There are three principle aspects of fault events
that mitigate the development of high-confidence
embedded systems.

First, a failure event in the operation of
embedded systems must be observable. That is, any
operational process that deviates from its certified
sequence of execution must be observable so that an
exception can be raised. This departure will, of
necessity, first be observed in one of the program modules
that constitute the execution primitives of the operation.
At the lowest level each system is comprised of primitive
modules, e.g., code modules. These modules are
structured in the design process to implement basic,
elemental, system operations. Thus, the topology of a
system must be designed to reflect this organization.

Second, a failure event that occurs in a specific
code module must be detectable at the point that it occurs.
The detection of the failure event is central to this
discussion, as it will have direct implications with respect
to the need for remapping techniques. The first step in
this process is to suitably instrument a system with
sufficient software and hardware probes to capture the
failure event and to initiate the failure analysis process
[13]. The second step of the detection process is the
notion of damage assessment. The failure of a function
implemented by a particular code module may well

propagate to other functions that are closely related to the
failed module in the system topology.

Finally, the system under failure events must be
recoverable. It is one thing for a system component to
fail. It is quite another for this failure event to bring the
whole system down. One characteristic of a high-
confidence embedded system must be the property of
graceful degradation. That is, it must continue to run
even though some of the functionality may have been lost.
This involves the intelligent remapping of system
functions or modules. Those functions that are impacted
by the failure of a system component must be identified
and isolated. In this sense, a system must be designed so
that the basic operations of the system may be remapped
onto system components that are still operational. That is,
the mission objectives of the embedded software must be
reassessed in terms of the current operational capabilities
of the software system [5].

The first key contribution of our new approach is
the characterization of the reliability of an embedded
system in terms of the system’s certified activities as it
executes its various operations and its implication on
system survivability. The reliability assessment of the
program will be accomplished dynamically while the
program is executing to identify, with reasonable
precision, which software component are unreliable and
how these components can be remapped to auxiliary
components. In other words, the system will be
instrumented to appraise its own health in order to engage
principles of survivability. It is understood that no
software system can be thoroughly or exhaustively tested.
However, it is possible to certify a range of software
behaviors that represent the certified operational profiles
of a correct, design-specified embedded system. Taking
these certified operational profiles as the standards for
measuring the reliability of the embedded system, the
direct monitoring and identification of all unusual or
abnormal software activities can be treated as indications
of a potentially compromised system. The status of the
system under these abnormal conditions can then be
analyzed and recertified as either acceptable or
unacceptable system behavior.

The second key contribution is the exploitation
of the reliability model to achieve system survivability.
Specifically, the reliability model is especially suitable to
overcome the limitations of the non-formal survivability
definitions in [5]. Rather, we propose survivability
approaches that adopti the formal survivability definitions
[15] and leveraging [9]. This expands other approaches
taken shifting the survivability considerations from the
survivability Markov models to real-time survivability
[8].

By incorporating these capabilities directly into
the system design methodology, we drastically shift away
from the current paradigm that addresses reliability,
security and survivability in an add-on fashion, occurring

at the end of the design cycle. Instead a unified and
integrated design methodology for embedded systems is
outlined below.

II. MOTIVATION

Existing approaches applied to system reliability either do
not differentiate between software and hardware failure
events or apply models developed mainly from a
hardware reliability perspective [14]. Hardware
components have the advantage that direct monitoring of
their proper operation can be observed and detected at the
component level. Software failure events, on the other
hand, are handicapped by the false assumption that
software failure events are observable. Furthermore, it is
assumed that it is possible to measure with some degree
of accuracy the time between these failure events or the
actual (real-time clock) time when the failure occurred.
The simplest example of this improbability of measuring
the time between failures of a program may be found in a
program that hangs in an infinite loop, which has real
implications with respect to recovery. Technically the
failure event happened on entry to the loop. The program,
however, will continue to execute until this behavior is
detected. This may take seconds, minutes, or hours
depending on the patience and/or attentiveness of the
operator. The fact is that the overwhelming majority of
software failures go unnoticed when they occur. Only
when these failures disrupt the system by second, third or
fourth order effects do they provide enough disruption for
outside observation. Consequently, only those dramatic
events that lead to the immediate collapse of a system can
an observer see directly. The more insidious failures will
lurk in the code for a long interval before their effects are
observed. Failure events go unnoticed and undetected
because the software has not been instrumented to detect
these failure events. It is, therefore, presumptuous to
attempt to model the reliability of software based on these
inaccurate and erroneous data. The same argument can be
made when considering error or fault propagation and
fault-containment.

As long as users perform each system operation
as prescribed by the intended system design, will each
corresponding operation cause the system to select a pre-
established, certified subset of its modules to execute. In
this way, users tend to execute subsets of the total
program operations. This has been observed and
considered in the analysis of software specifications [17].
It is interesting to note, however, that two users of the
same software may have totally different perceptions as to
the reliability of the same system depending upon the mix
of operations selected. This is directly attributable to the
fact that these users are effectively running two different
programs containing subsets of the entire program.
Barring hardware failures, the failure of one or more of
the modules in this subset can occur if either incorrect

input is detected (data types, variable range, etc.) or a
choice of non-standard combination of operations is
selected. This is the principal reason that a program may
have demonstrated great reliability in past performances
but may suddenly become quite unreliable when required
to adapt to changes in the manner in which the user
interacts with the system. In other words, the past
performance of a software system, from the standpoint of
reliability, is not at all a good predictor of the future
reliability of the system. Our previous investigations into
the etiology of software failures in the Primary Avionics
Software System of the Space Shuttle have provided
substantial insight into this view of software reliability.
On the basis of that work, it is now clear to us that it is not
the software system that fails but rather the software
system executing a particular operation that fails.

III. MODEL DESCRIPTION

One of the single most important aspects of the
system's reliability is its behavior at run-time, i.e., its run-
time profile.

III.A Certified Profile

Perhaps the greatest threat to the reliable
operation of a modern embedded software system is the
unanticipated operational demands placed on the system
by the operational environment. As a consequence the
system may well shift from a reliable (certified by the
software developer) operational profile to an uncertified
profile. In the event that a system is driven to operate
under an uncertified operational profile, it will be
important to understand whether the new behavior can be
tested and possibly certified as reliable. This assumes, of
course, that the software system is suitably instrumented
to provide sufficient information to reconstruct the system
activity and validate the correctness of that behavior and
the associated system components. The main objective of
the dynamic measurement methodology from the
standpoint of high-confidence software systems is to trap,
in real-time, any behavior that is considered uncertified.
We hypothesize that it is possible from the observed
behavior of the software modules to determine with a
certain level of confidence the future reliability of a
system under one or more certified operational profiles.

II1.B Uncertified Profile

We subscribe to the notion that uncertified
behavior constitutes anomalous behavior that has
important consequences. The detection of an anomalous
behavior is a likely indication that the software/hardware
component has failed, a malicious attack has occurred, or
that the users has initiated a sequence of uncertified
operations [3]. The failure event itself is made tangible

through such an anomalous process. The first step, then,
in the design of a high-confidence system is the creation
of a contingency management system to detect the
anomalous activity of an executing system and resolve the
problem at the lowest level of program module
granularity.

III.C. General Design Overview

Given that a failure has occurred there are two
possible avenues that the design process may take to
insure that the software system will continue to operate
after the failure event. First, the software system may be
allowed to continue operating by eliminating the
functionality that led to the failure event. Alternatively,
the software may be designed to duplicate vital or mission
critical functionalities by an associative remapping of
available functionalities; in which case, the failure of a
critical functionality can be recovered once detected.
Dependability considerations are based on the concept
that, to insure a high level of reliability in an executing
software system, a program must be designed to work in
conjunction with a real-time monitoring system. The
principle considerations are two-fold. On the one hand,
one has to monitor the activity of an executing program
for the distribution of activity across program modules
and also for potential failure events at the module level.
The second consideration is to control the structure of the
executing program. To perform this function, one needs
to provide a new loaded program with an initial call
structure that will control the execution sequence of
program modules in the executing program. Furthermore,
one may have to alter the structure of the executing
program in the event that a failure has been detected at the
program module level.

The general design methodology and system is
displayed in Figure 1, which shows the executing
program and the contingency management system. The
blocks indicate a sequence of operations and core
concepts and will be italicized as they are introduced in
the following sections.

Executing Program

Instrumentation
Telemetry

] =~ -
i)

DAIF'er [— Ana}ysis
esign \,7 Engine
Parameters

Design
Interface

Contingency Management System

Fig. 1. General Design Overview

1I1.C.I Executing Program

In this design environment, the Executing
Program has two distinct interfaces with the monitoring
system. The Design Interface captures the structure of the
call tree that represents the call sequences of the program
modules as determined in the design process. The
transfer of program control among all program modules
occurs through this interface. This permits the program
structure to be remapped during the program execution.
As the program is executing, telemetry from the executing
modules will be transmitted to the Instrumentation
Telemetry section. This telemetry has two separate
components. First, there is the record of transfer of
control from one module to another. This permits the
dynamic assessment of program activity (as in
operational, functional, and module profiles). Also,
failure events may be captured at the module level. The
precise nature of the failure event together with the failed
module name is also part of the basic telemetry package.
The telemetry from the executing program is sent directly
to the sensor engine in the dependability system. The
results of the telemetry are then transferred to the analysis
engine. There are two different types of program activity
that the analysis engine processes. First, there is the flow
of nominal program activity telemetry. Second, there are
failure event data.

1I1.C.II Contingency Management System

In order to link the executing program with the
contingency management system an information flow
needs to be established that allows for the real-time
monitoring and analysis of the executing program. To
this end, as an integral part of the software design process
(Design), a software system will be suitably instrumented
so that its operation may be monitored when it is
executing. It is quite reasonable, then, to integrate a
Sensor Engine into the software operational scenario so
that the operation of the system may be monitored as the
software executes. As the system executes, sooner or
later it may encounter a module with a fault in it.
Execution of this fault may result in the failure of the
software component that contains the fault. The sensor
engine that monitors the execution of the software system
may detect this failure event. In the event that a failure
event does occur, it will be important to determined the
nature of the failure event and ameliorate the effect of the
failure so that the software system may continue to
execute. There must be, then, some sort of analysis
(Analysis Engine) that will occur after the detection of the
failure event to determine a fall back strategy for the
software system. This fallback strategy is articulated in
the design parameters. The original Design Parameters
that govern the software execution must be altered so that
the system may resume executing. This will result in the

expression of a new set of design parameters that will
govern the operation of the system when it continues its
execution.

IV. MODEL DEFINITIONS

To lay the foundation for a measurement-based,
dynamic monitoring system that permits the real-time
assessment of software reliability, it is necessary to
establish a model for program execution that lends itself
to a suitable instrumentation for the monitoring and
failure analysis processes. In the subsequent discussion
of program operation, it is useful to make the description
of program specification, design and implementation
somewhat more precise by introducing some notational
conveniences. Let us begin this discussion by observing
the fact that there are really two distinct abstract machines
or models that define the implementation in the
development of any software system.

IV.A. Operational and Functional Machine

The first software abstract machine is the
operational machine. This is the machine that interfaces
directly with the hardware interface. The embedded
system provides a suite of services to the hardware
system. Each of these services will cause the operational
machine to perform a series of actions called operations.
Each of these operations, in turn, causes the operational
machine to perform some specific action. It is the
purpose of this operational machine to articulate exactly
what the software system must do to provide the
necessary services dictated by the embedded software
system requirements.

The second abstract machine is the functional machine.
This machine is animated by a set of functionalities that
describes exactly how each system operation is
implemented. Whereas the operational abstract machine
articulates what the software system will look like to the
hardware system in which it is embedded, the functional
abstract machine is that entity actually created by the
software design process. We now turn our attention to the
precise relationship between the operational abstract
machine and the functional abstract machine. It is quite
conceivable that we could construct a system wherein
there is a one-to-one mapping between the user's
operational model and the functional model. That is, for
each user operation there is exactly one corresponding
functionality. In most cases, however, there may be
several discrete functionalities that must be executed to
express the system services provided by the operational
abstract machine.

IV.B. Definitions

Each operational machine consists of a set, O, of
operations that animate it. Each functional system will
have a set, F, of functionalities that animate it. For each
operation, o € O, that the system may perform, there will
be a subset, F'” C F, of functionalities that will
implement it. It is possible, then, to define a relation
IMPLEMENTS over O x F' such that
IMPLEMENTS (o, f)is true if functionality f'is used in
the implementation of an operation, 0. Within each
operation one or more of the system's functionalities will
be expressed. For a given operation, o, these expressed
functionalities are those with the property
F ={f :F | IMPLEMENTS o0, f)}.

Each functionality exercises a particular aspect of the
functional machine. As long as the system's operational
profile remains stable, the manner in which the functional
machine actually executes is also stable. However, when
there is a major shift in the operational profile by the
system, then there will be a concomitant shift in the
functional profile as well. This redistributes the activity
of the functional machine and results in uncharacteristic
behavior of the functional machine. This change in the
usage of the system constitutes anomalous system
activity. It should be noted that this definition of
anomalous system activity is much more precise than that
used in intrusion detection, i.e., anomaly detection [18].

Let M be the set of program modules of a
system. The software design process is then basically a
matter of assigning functionalities fE€F to specific

program modules m € M . The design process may be
thought of as the process of defining a set of relations,
ASSIGNS, over F'xM such that ASSIGNS(f, m) is true if
functionality f'is expressed in module m.

Each operation in O is distinctly expressed by a
set of functionalities. If a particular operation, o, is
defined by functionalities f, and f;, then the set of program
modules that are bound to operation o is

MO =MD UMY where MY and MY represent
the set of program modules associated with functionality

f,andf;. In general, M'” = UM(f’)
IMPLEMENTS o, i)

IV.C. Mappings

There is a distinct mapping from the set of
operations to the set of program modules. Each operation
is associated with a distinct set of functionalities. These
individual functionalities are, in turn, associated with a
distinct set of modules. The mapping will be explained
using the example shown in Figure 2. In this figure we
can see that there are three operations (o, through o;) that
map into a set of five functionalities (f; through f5) that are
implemented, in turn, by a total of eight program modules

(m; through mg). It is clear from this figure that if the
system exercises the operation o; substantially, then
modules mg, m; and mg will also be heavily used.

b

it

Operations \%

Functionalities

SIdb

Modules

Fig. 2. Mappings

V.SYSTEM BEHAVIOR

A significant problem incurred in the
development of embedded systems is the simple fact that
there is no concept of time in a software system.
Programs are at once ethereal and eternal. There is no
real concept of time in the physics of software systems.
The notion of time must be imposed from the outside
world perhaps in the form of a real-time clock interrupt or
some other such mechanism. For our purposes, we will
measure the progress of a system executing a sequence of
operations or functionalities or modules in terms of
epochs [13]. An operational epoch is the transition from
one operation to another. Similarly, a functional epoch is
the transition from one functionality to another. Finally, a
module epoch is the transition from one module to
another.

The behavior of the system will next be considered with
respect to its user operational profile, functional profile
and module profile, which we denote by u, ¢ and p
respectively

V.A. Operational Profile

The operational capabilities of an embedded
software system are specified during the system
requirements specification phase. The end product of the
system requirements analysis is a set of specifications that
articulates the nature of the operations that the system
performs. Each of the hardware systems that contain the
embedded software system will exercise its embedded
software system with a specific subset of these operations.
In this process, the system typically will not use all of the
operations with the same probability. The operational
profile of the software system is defined as the set of

unconditional probabilities of each of the operations, o,
being executed by the hardware.

One approach to quantifying the mix of user
operations selected for execution is to use a stochastic
process to describe module epochs, i.e., the transition of
program modules from one to another as a user transitions
among operations. Let Z be a random variable defined on
the indices of the operations in O. Then,

u,=Pr[Z=1],=1,2,...,|0| is the probability that the
system is executing an operation o, as specified in the
operational specification of the program and |0 is the
cardinality of the set of operations. We can now define
the operational profile formally as a vector

U =<ty Uyl > representing the distribution of

activity or usage among the set of operations. The
distribution of the operational profile is multinomial for
programs designed to fulfill more than two distinct
operations.

Given the above foundation for describing the
distribution of activity of a system across a set of distinct
operations, it is possible to define more precisely the
notion of the behavior of the system in regards to the
embedded software system. This requires measuring the
transition of the system from one operation to another as
an operational epoch. If we observe the sequence of
operations performed by the system over time, we may
tally the frequency-of-use, or spectrum s, of each
operation. We may derive an estimate for the distribution
of system activity, i.e., usage, denoted by #,, on a
particular operation o; after n operational epochs.
Specifically, over an interval of n epochs during which o;
was used s; times, we get Iftl. = s, /n. Note that the sum
of all s; in n epochs is maximally n. We will refer to s; as
the frequency of o; . The observed operational profile for
this interval of n epochs is represented by a n-
tuple U =< 1l,,ils,... ’ﬁ\o\ >. Thus, U indicates the

fraction of time specific operations were used over n
operations, i.e., over n epochs. The observed profile, 1,
can serve as an estimate for the user operation profile u.
It is clear that this estimate, U, for the user operation
profile is a point in the » dimensional space of the
operational profile.

Now that we have defined the observed
operational profile 1 with respect to 7 epochs, let's
consider sequences of operational profiles, each
consisting of n operations. Let @* denote the K"
operational profile. Again, each of the

vectors " represents a point in the -1 dimensional
behavior space of the user. These individual profiles, or
usage patterns, are clustered about a centroid, U, in the n-
1 dimensional behavior space. Centroid U is defined
over m sequences of n epochs. Specifically, the elements

m
u, of u are defined as u, = 212,’ . Each of the

1
m g
observed operational profiles @* is within a specific

n
distance d; of the centroid, where d, = E (, -0l

i=1
One may define an arbitrary distance & about the centroid
so that all points in the observed operational profiles are
included. This € neighborhood defines the behavior of
the system over which u is defined, i.e., the period of
observation.

V.B. Functional Profile

As a developing software system enters the high-
level design stage, the operational model must be mapped
onto a functional model that serves as the foundation for
the coding process. From this high-level design process,
the precise nature of the functional machine will be
developed. Each operation of the operational machine
will be implemented by one or more functionalities that
drive the function/design model. The distribution of
activity among the various system functionalities will be
represented by the system functional profile. The
functional profile of the software system is the set of
unconditional probabilities for each functionality in
executed by the system. Let ¥ be a random variable
defined on the indices of the functionalities in F. Similar
to the operational profile in the previous section we can
now define a functional profile as q =< ¢q,,q,.,... s >

where g, =Pr[Y =k], k=1,2, ... ,|F| is the probability
that the system is executing program functionality f; as
specified in the functional requirements of the program.
A program executing on a serial machine can only be
executing one functionality at a time. The distribution of
¢, then, is multinomial for programs with multiple
functionalities. The probabilities ¢, are dependent on
how the system distributes its time across the suite of
system operations. Given functionality f; and operation o,
we can now define the probability that f; is used by o; as
wy, =Pr[Y =k1Z =1]. Thatis, if we know the particular
operation being performed, then we can determine the
distribution of activity among the various functionalities.
The joint probability that a given operation o; is
being expressed and the system is executing a particular
functionality f; is given by
PrlY =kNZ=1]=Pr[Z=1]Pt[Y =k|Z=1]=u,w,,.
Thus, the unconditional probability g, of executing
functionality f; under a particular operational profile is
q, =Pr[Y =k]= ElPr[Y —kNZ=1I]= Elu,wkl.

V.C. Module Profile

The manner in which a program exercises its
many modules as the system executes a sequence of
operations of the embedded software system is
determined directly by the design of the program. Certain
subsets of modules are employed to implement each of
the functionalities. Each time that a functionality is
invoked in the implementation of an operation, a distinct
subset of program modules will execute. The distribution
of activity of program modules depends on the usage of
functionalities.

Analogous to the definitions expressing the
relationship between operations and functionalities we
can express the module profile asp =< p,, p,,.- <Pl >

The conditional and unconditional probabilities with
respect to the occurrence of modules follow directly.

VI. MODEL ANALYSIS

We now explore how a program is structured as
it executes each of the user operations. As a program
executes a particular user operation, it transfers control
from one module to another. There is always a main
program module that receives control as the program
begins to execute. The structure of the executing program
may be represented as a call tree. Each program
functionality is represented by one or more sub-trees of
this call tree, depending on the number of operations that
are implemented by that functionality.

VI.A. Operation Dependence Graph

A demand-driven call-tree (DDCT) is
constructed for each certified operation. Memorize the
dynamic user operation applications into an operation-
lookup (OLU) table for future analysis. The DDCT is a
directed graph defined with an underlying support algebra
that provides a convenient venue for applications of
formal analysis. The DDCT compilations define variable
usage at the module lever as well as a call tree that
uniquely specifies each certified user operation. The
OLU table contains the subset of program modules and
calls that actually occur when the program is executing
under a particular user operational profile. However, a
second call tree that can be constructed by formal analysis
is what we term the feasible call-tree. This tree is
comprised of nodes representing all possible program
modules and arcs that represent all possible module call
combinations. In practice, elements of poor program
design, such as the use of function pointers, may preclude
the exact determination of the feasible call tree.

Within the context of the DDCT, specific
functionalities may be identified for use in implementing

other functionalities. Beginning with the main program
module, a master-level functionality for the entire
program exits. In one sense, all other program
functionalities implement this master-level functionality.
Each functionality has a module at the root of its sub-tree
that is unique to that functionality. This means that nodes
in that sub-tree are not elements of the next upper level
functionality. Thus, the elements of the sub-tree headed
by the root node module of functionality f; are not
necessarily also elements of functionality f;.

Program modules are structured in terms of calls
among the program modules into call trees.
Functionalities are expressed as sub-trees of call trees.
There is a distinct feasible call sub-tree for each
functionality. A functionality sub-tree is constructed from
a call sub-tree by substitution. A functionality node
replaces each call sub-tree representing that functionality
in the original call tree. The end result of this substitution
is the construction of a functionality sub-tree displaying
the interrelationship of the set of possible functionalities.
This reduction may be carried yet one further step. Since
each operation is comprised of functionalities that are
organized into functionality sub-trees, substituting an
operational node for the functionality sub-trees that
comprise that node can reduce the functionality tree. In
this final step the operational tree is created revealing the
operational structure of the program.

Once the functional analysis is completed, the
demand-driven-call-tree can be inverted to examine its
data-flow behavior, thus exposing the effects of fault
propagation under consideration of pathological behavior
[7]. Under this analysis additional rewrite rules can be
applied to expose execution parallelism [1].

VLB. Reliability, Security and Survivability

The most important consideration, from the
standpoint of system survivability, security and reliability,
is the mapping from the set of user operations to the set of
program modules. A software failure event can occur at
the program module level. The failed program module
may be associated with one or more operations in the
operational model [3]. This implies that a particular
failure event at the module level results in the failure of
one or more user operations. The failure of a software
system, then, is dependent only on what the software is
currently doing: the operations that a user is performing.
If a program is currently executing an operation that is
expressed in terms of a set of fault free modules, this
operation can certainly execute indefinitely without any
likelihood of failure [11, 12]. A failure event can only
occur when the software system executes a module that
contains faults. If an operation is never selected that
drives the program into a module that contains faults, then
the program will never fail. Alternatively, a program may
well execute successfully in a module that contains faults

just as long as the faults are in code subsets that are not
executed [10].

The distribution of faults in a software system is
most decidedly not uniform. Faults are located in
program modules in relationship to certain well-defined
program attributes [12]. Some program modules are quite
fault prone while others are relatively fault free. Clearly,
some operations might well invoke a set of fault prone
modules while other operations will tend to use modules
that are relatively fault free. The distribution of program
activity across the set of modules potentially containing
faults is a very important piece of information.

By keeping track of the state transitions from
module to module and operation to operation we may
come to understand the relative fault exposure of various
execution scenarios. This information coupled with the
operational profile tells us just how reliable the system is
when it is deployed. Programs make transitions from
module to module as they execute. These transitions may
be observed. Transitions to program modules that are
discovered to be fault-laden results in an increased
probability of failure. We can model these transitions as a
stochastic process. Ultimately, by developing a
mathematical description for the behavior of the software
as it transitions from one module to another driven by the
operations that it is performing, we can describe the
operational reliability of the program. If we can know the
reliability of the operations and how the system
apportions its time among these operations, we can then
know the reliability of the system. In a sense, this
constitutes a real-time usage pattern based reliability
model that is much more powerful than the model
described in [17].

From this new perspective, software
survivability may be achieved through the understanding
of software activity in one of two distinct ways. First, a
thorough analysis of the operational reliability of a system
must be established before the system is actually
deployed. Secondly, these systems are characterized by
functionalities that are critical to their mission. Through
the application of survivability techniques, the failure of
one system component may be averted from a total
catastrophic collapse of the software system. The
survivability considerations are met though a partition of
the system functionalities into vital and non-vital
components.

In Figure 3 we see a hypothetical sequence of
execution of several functionalities. Functionality f; is
followed by functionality f, which is followed by
functionality f. and f;. From a reliability point of view
this constitutes a acyclical reliability block diagram [14].
At the design stage we may classify each functionality as
to its relative importance to insuring the meaningful
operation of the software system. In this process we
might, for example, determine that functionality fj, is a
vital functionality. To insure the reliability of this system

component we may chose to implement the functionality
in two distinct functionalities, f;; and f;,. These
functionalities are essentially identical. They are
implemented, however, by two disparate sets of program
modules. These functionalities are always run in parallel,
say with two different execution threads. If there is a
failure in

one program module that implements a functionality,
then that execution thread will be abandoned. The result
is a parallel reliability block diagram, i.e. an 1-of-n
configuration. In this way, reliability of a system can be
manipulated by taking advantage of parallel reliability
blocks and, given the dynamic derivation of the reliability
model, a run-time reliability optimization could be
achieved extending the ideas in [2].

In Figure 3, we also can see that there is an
execution path around functionality f;. In this case, this
particular functionality is not vital to the continuing
operation of the system. If there is a failure in one of the
modules that implement this functionality, the subsequent
execution sequences simply bypass the functionality. In
this case, there is a loss of system functionality, but the
system can continue to operate in a depredated fashion.

S
Sz !

Fig. 3. Execution sequence

We now return the discussion to the analysis
engine that was shown in Figure 1 to consider its role
when the program is executing in a nominal fashion. We
are aware that a program that has been certified for certain
behaviors executes in a reliable fashion. The analytical
engine's role here is a fairly simple one. A program is
executing in a nominal fashion if it may be determined
that the profiles (operational, functional, and module) are
within a specific tolerance factor. We may determine this
by noting that a profile, say module profile, represents a
point in an n dimensional space. During a particular
observation interval we may measure the distance
between the certified module profile p© and the most
recently observed module profile, p°, as
d= Ei(pi=p?)?. A system may be deemed to be
operating in a nominal or pre-certified fashion if d <¢,
where ¢ is a pre-established threshold for nominal
program activity. If a program is found to be operating in
an off-nominal fashion, the modules that are involved in
the new behavior are those with the property p; — p/ <0.
The subset of modules for which this inequality holds

may easily be mapped to a specific functionality and
thence to one or more operations. This change in
behavior may then be employed to recertify the new
operation profile of the system.

In the event of a failure in a program module, it
is necessary to identify the particular functionality that
was being expressed at the point of the failure.
Depending on the design there are several options open to
continue the program execution. First, let us observe that
the failed module is an element of a particular
functionality. That functionality is, in turn, used to
implement one or more operations. If the operations in
question are non-vital operations, we may simply remap
the program execution tree to exclude the failed
operations and return the program to its new restricted
operational status. It is quite possible that the failed
module is determined to be part of a vital
functionality/operation. If this is the case, then it is not
possible to simply map around the faulty functionality.
We must implement a reliability strategy long employed
in the design of mission-critical hardware systems. We
implement each critical functionality into multiple distinct
call sub-trees, as dictated by the fault model we want to
select. This means that all functionalities that are
determined to be vital run in a redundant fashion. Each of
the call sub-trees will be implemented with different sets
of modules at the design stage. These redundant
functionalities run in parallel (possibly as execution
threads) when the program requires that functionality. In
this case, the thread containing the failed program module
may simply be prevented from executing in the future.

Finally, it should be pointed out that security is
an immediate consequence of our software approach.
System security is treated as a general fault scenario that
obviates the need to implement traps or guards into the
software/hardware specifications to counter specific
attacks; making our approach robust.

VII. CONCLUSIONS

The ultimate objective of our research is to
develop a rigorous methodology for the design and
implementation of embedded software system. The
driving force behind this research is the development of a
disciplined engineering approach to this software
development. Central to this development process is the
empirically based design and implementation strategies.
This project provides the foundation toolset for the
necessary measurement activities for these design and
implementation. It also provides the foundation research
methodology for the conduct of inquiry into the
development of engineered software systems.

REFERENCES

[17 Arvind and X. Shen. Using Term Rewriting Systems to
Design and Verify Processors, IEEE Micro Special Issue
on Modeling and Validation of Microprocessors,
May/June 1999.

[2] L. Assayad, A. Girault, and H. Kalla. 4 bi-criteria
scheduling heuristics for distributed embedded systems
under reliability and real-time constraints. In
International Conference on Dependable Systems and
Networks, DSN'04, Firenze, Italy, June 2004.

[3] S. G. Elbaum and J. C. Munson, "Intrusion Detection
through Dynamic Software Measurement", Proceedings
of the USENIX Workshop on Intrusion Detection and
Network Monitoring , Santa Clara, CA, April 1999.

[4] S. G. Elbaum and J. C. Munson, "Software Black Box:
An Alternative Mechanism for Failure Analysis",
Proceedings of the 2000 IEEE International Symposium
of Software Reliability Engineering , San Jose, CA,
November 2000.

[5TR. Ellison, D. Fisher, H. Lipson, T. Longstaff, and N.
Mead, Survivability: Protecting Your Critical Systems,
IEEE INTERNET COMPUTING, Vol. 3, No. 6;
NOVEMBER-DECEMBER 1999, pp. 55-63.

[6] R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M.
Thambidurai. The MAFT architecture for distributed fault
tolerance. IEEE Transactions on Computers, 37(4):398--
405, April 1988.

[7] Krings Axel W., Jean-Louis Roch, and Samir Jafar,
"Certification of Large Distributed Computations with
Task Dependencies in Hostile Environments", IEEE
Electro/Information Technology Conference , (EIT 2005),
May 22-25, Lincoln, Nebraska, 2005

[8] Yun Liu and Kishor S. Trivedi, 4 General Framework
for Network Survivability Quantification, in Proceedings
of the 12th GI/ITG Conference on Measuring, Modelling
and Evaluation of Computer and Communication Systems
(MMB) together with 3rd Polish-German Teletraffic
Symposium (PGTS), Dresden, Germany, September
2004.

[9] S.C. Liew and K.W. Lu. 4 framework for
characterizing disaster-based network survivability. IEEE
Journal on Selected Areas in Communications,
12(1):52-58, January 1994.

[10]J. C. Munson, "A Functional Approach to Software
Reliability Modeling," in Boisvert, ed., Quality of
Numerical Software, Assessment and Enhancement,
Chapman & Hall, London, 1997. ISBN 0-412-80530-8.

[11]J. C. Munson and S. G. Elbaum, "Software Reliability
as a Function of User Execution Patterns", Proceedings of
HICSS-32, Hawaii, 1999.

[12]J. C. Munson and A. P. Nikora, "Toward a
Quantifiable Definition of Software Faults," Proceedings
of the 2002 IEEE International Symposium of Software
Reliability Engineering, Annapolis, MD, December 2002.

[13]J. C. Munson, Software Engineering Measurement,
CRC Press, 2003, ISBN: 0849315034

[14] Robin A. Sahner, Kishor S. Trivedi and Antonio
Puliafito, Performance and Reliability Analysis of
Computer Systems.: An Example-Based Approach Using
the SHARPE Software Package, (The Red Book), Kluwer
Academic Publishers, 1996.

[15] Working Group on Network Survivability
Performance. Technical report on enhanced network
survivability performance, Technical report, February
2001.

[16]J. H. Wensley, L. Lamport, J. Goldberg, M. W.
Green, K. N. Levitt, P. M. Melliar-Smith, R. E. Shostak,
and C. B. Weinstock. SIFT: Design and analysis of a
Sfault-tolerant computer for aircraft control. Proceedings
of the IEEE, 66(10):1240--1255, 1978.

[17] Whittaker James A., and J.H. Poore, Markov
Analysis of Software Specifications, ACM Transactions
on Software Engineering and Methodology, Vol.2, No.1,
January 1993, pp. 93-106.

[18] Allen, et.al., State of the Practice of Intrusion
Detection Technologies, Technical Report , CMU/SEI-99-
TR-028, ESC-99-028, January 2000.

