Multicasting

- Addresses that refer to group of hosts on one or more networks
- Uses
 - Multimedia “broadcast”
 - Teleconferencing
 - Database
 - Distributed computing
 - Real time workgroups
Example Config

Suppose N1 wants to multicast to N3, N5, and N6.

Broadcast and Multiple Unicast

- Broadcast a copy of packet to each network
 - Requires 13 copies of packet
- Multiple Unicast
 - Send packet only to networks that have hosts in group
 - 11 packets
Table 19.1 Traffic Generated by Various Multicasting Strategies

<table>
<thead>
<tr>
<th></th>
<th>(a) Broadcast</th>
<th></th>
<th>(b) Multiple Unicast</th>
<th></th>
<th>(c) Multicast</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S → N2</td>
<td>S → N3</td>
<td>S → N5</td>
<td>S → N6</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S → N3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S → N5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S → N6</td>
</tr>
<tr>
<td>N1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>N2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>N4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>N5</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>N6</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>L1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>L4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

True Multicast

- Determine least cost path to each network that has host in group
 - Gives spanning tree configuration containing networks with group members
- Transmit single packet along spanning tree
- Routers replicate packets at branch points of spanning tree
- 8 packets required
Requirements for Multicasting (1)

- Router may have to forward more than one copy of packet
- Convention needed to identify multicast addresses
 - IPv4 - Class D - start 1110
 - IPv6 - 8 bit prefix, all 1, 4 bit flags field, 4 bit scope field, 112 bit group identifier
- Nodes must translate between IP multicast addresses and list of networks containing group members
- Router must translate between IP multicast address and network multicast address
Requirements for Multicasting (2)

- Mechanism required for hosts to join and leave multicast group
- Routers must exchange info
 - Which networks include members of given group
 - Sufficient info to work out shortest path to each network
 - Routing algorithm to work out shortest path
 - Routers must determine routing paths based on source and destination addresses

Spanning Tree from Router C to Multicast Group
Internet Group Management Protocol (IGMP)

- RFC 3376
- Host and router exchange of multicast group info
- Use broadcast LAN to transfer info among multiple hosts and routers

Principle Operations

- Hosts send messages to routers to subscribe to and unsubscribe from multicast group
 - Group defined by multicast address
- Routers check which multicast groups are of interest to which hosts
- IGMP currently version 3
- IGMPv1
 - Hosts could join group
 - Routers used timer to unsubscribe members
Operation of IGMPv1 & v2

- Receivers have to subscribe to groups
- Sources do not have to subscribe to groups
- Any host can send traffic to any multicast group
- Problems:
 - Spamming of multicast groups
 - Even if application level filters drop unwanted packets, they consume valuable resources
 - Establishment of distribution trees is problematic
 - Location of sources is not known
 - Finding globally unique multicast addresses difficult

IGMP v3

- Allows hosts to specify list from which they want to receive traffic
 - Traffic from other hosts blocked at routers
- Allows hosts to block packets from sources that send unwanted traffic
IGMP Message Formats

Membership Query

- Sent by multicast router
- General query
 - Which groups have members on attached network
- Group-specific query
 - Does group have members on an attached network
- Group-and-source specific query
 - Do attached device want packets sent to specified multicast address
 - From any of specified list of sources
Membership Query Fields (1)

- **Type**
- **Max Response Time**
 - Max time before sending report in units of 1/10 second
- **Checksum**
 - Same algorithm as IPv4
- **Group Address**
 - Zero for general query message
 - Multicast group address for group-specific or group-and-source
- **S Flag**
 - 1 indicates that receiving routers should suppress normal timer updates done on hearing query

Membership Query Fields (2)

- **QRV** (querier’s robustness variable)
 - RV value used by sender of query
 - Routers adopt value from most recently received query
 - Unless RV was zero, when default or statically configured value used
 - RV dictates number of retransmissions to assure report not missed
- **QQIC** (querier’s querier interval code)
 - QI value used by querier
 - Timer for sending multiple queries
 - Routers not current querier adopt most recently received QI
 - Unless QI was zero, when default QI value used
- **Number of Sources**
- **Source addresses**
 - One 32 bit unicast address for each source
IGMP Message Formats

Membership Report

<table>
<thead>
<tr>
<th>Bit</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>0x22</td>
<td>Reserved</td>
<td></td>
<td>Checksum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
<td>Number of group records (M)</td>
<td></td>
</tr>
<tr>
<td>Group record [1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group record [2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group record [M]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Membership report message

Membership Reports

- **Type**
- **Checksum**
- **Number of Group Records**
- **Group Records**
 - One 32-bit unicast address per source
IGMP Message Formats

Group Record

- **Record Type**
 - See later
- **Aux Data Length**
 - In 32-bit words
- **Number of Sources**
- **Multicast Address**
- **Source Addresses**
 - One 32-bit unicast address per source
- **Auxiliary Data**
 - Currently, no auxiliary data values defined
IGMP Operation - Joining

- Host using IGMP wants to make itself known as group member to other hosts and routers on LAN
- IGMPv3 can signal group membership with filtering capabilities with respect to sources
 - EXCLUDE mode – all group members except those listed
 - INCLUDE mode – Only from group members listed
- To join group, host sends IGMP membership report message
 - Address field multicast address of group
 - Sent in IP datagram with Group Address field of IGMP message and Destination Address encapsulating IP header same
 - Current members of group will receive learn of new member
 - Routers listen to all IP multicast addresses to hear all reports

IGMP Operation – Keeping Lists Valid

- Routers periodically issue IGMP general query message
 - In datagram with all-hosts multicast address
 - Hosts that wish to remain in groups must read datagrams with this all-hosts address
 - Hosts respond with report message for each group to which it claims membership
- Router does not need to know every host in a group
 - Needs to know at least one group member still active
 - Each host in group sets timer with random delay
 - Host that hears another claim membership cancels own report
 - If timer expires, host sends report
 - Only one member of each group reports to router
IGMP Operation - Leaving

- Host leaves group, by sending leave group message to all-routers static multicast address
- Send membership report message with EXCLUDE option and null list of source addresses
- Router determine if there are any remaining group members using group-specific query message

Routing Protocols

- Routing Information
 - About topology and delays in the internet
- Routing Algorithm
 - Used to make routing decisions based on information
Autonomous Systems (AS)

- Group of routers
- Exchange information
- Common routing protocol
- Set of routers and networks managed by single organization
- A connected network
 - There is at least one route between any pair of nodes

Interior Router Protocol (IRP)

Exterior Routing Protocol (ERP)

- Passes routing information between routers within AS
- May be more than one AS in internet
- Routing algorithms and tables may differ between different AS
- Routers need some info about networks outside their AS
- Used exterior router protocol (ERP)
- IRP needs detailed model
- ERP supports summary information on reachability
Approaches to Routing – Distance-vector

- Each node (router or host) exchange information with neighboring nodes
 - Neighbors are both directly connected to same network
- First generation routing algorithm for ARPANET
- Node maintains vector of link costs for each directly attached network and distance and next-hop vectors for each destination
- Used by Routing Information Protocol (RIP)
- Requires transmission of lots of information by each router
 - Distance vector to all neighbors
 - Contains estimated path cost to all networks in configuration
 - Changes take long time to propagate
Approaches to Routing – Link-state

- Designed to overcome drawbacks of distance-vector
- When router initialized, it determines link cost on each interface
- Advertises set of link costs to all other routers in topology
 - Not just neighboring routers
- From then on, monitor link costs
 - If significant change, router advertises new set of link costs
- Each router can construct topology of entire configuration
 - Can calculate shortest path to each destination network
- Router constructs routing table, listing first hop to each destination
- Router does not use distributed routing algorithm
 - Use any routing algorithm to determine shortest paths
 - In practice, Dijkstra’s algorithm
- Open shortest path first (OSPF) protocol uses link-state routing.
- Also second generation routing algorithm for ARPANET

Exterior Router Protocols – Not Distance-vector

- Link-state and distance-vector not effective for exterior router protocol
- Distance-vector assumes routers share common distance metric
- ASs may have different priorities
 - May have restrictions that prohibit use of certain other AS
 - Distance-vector gives no information about ASs visited on route
Exterior Router Protocols – Not Link-state

- Different ASs may use different metrics and have different restrictions
 — Impossible to perform a consistent routing algorithm.
- Flooding of link state information to all routers unmanageable

Exterior Router Protocols – Path-vector

- Dispense with routing metrics
- Provide information about which networks can be reached by a given router and ASs crossed to get there
 — Does not include distance or cost estimate
- Each block of information lists all ASs visited on this route
 — Enables router to perform policy routing
 — E.g. avoid path to avoid transiting particular AS
 — E.g. link speed, capacity, tendency to become congested, and overall quality of operation, security
 — E.g. minimizing number of transit ASs
Border Gateway Protocol (BGP)

- For use with TCP/IP internets
- Preferred EGP of the Internet
- Messages sent over TCP connections
 - Open
 - Update
 - Keep alive
 - Notification
- Procedures
 - Neighbor acquisition
 - Neighbor reachability
 - Network reachability

BGP Messages
BGP Procedure

- Open TCP connection
- Send Open message
 - Includes proposed hold time
- Receiver selects minimum of its hold time and that sent
 - Max time between Keep alive and/or update messages

Message Types

- Keep Alive
 - To tell other routers that this router is still here
- Update
 - Info about single routes through internet
 - List of routes being withdrawn
 - Includes path info
 - Origin (IGP or EGP)
 - AS_Path (list of AS traversed)
 - Next_hop (IP address of border router)
 - Multi_EXIT_Disc (Info about routers internal to AS)
 - Local_pref (Inform other routers within AS)
 - Atomic_Aggregate, Aggregator (Uses address tree structure to reduce amount of info needed)
Uses of AS_Path and Next_Hop

- **AS_Path**
 - Enables routing policy
 - Avoid a particular AS
 - Security
 - Performance
 - Quality
 - Number of AS crossed

- **Next_Hop**
 - Only a few routers implement BGP
 - Responsible for informing outside routers of routes to other networks in AS

Notification Message

- **Message header error**
 - Authentication and syntax

- **Open message error**
 - Syntax and option not recognized
 - Unacceptable hold time

- **Update message error**
 - Syntax and validity errors

- **Hold time expired**
 - Connection is closed

- **Finite state machine error**

- **Cease**
 - Used to close a connection when there is no error
BGP Routing Information Exchange

- Within AS, router builds topology picture using IGP
- Router issues Update message to other routers outside AS using BGP
- These routers exchange info with other routers in other AS
- Routers must then decide best routes

Open Shortest Path First (1)

- OSPF
- IGP of Internet
- Replaced Routing Information Protocol (RIP)
- Uses Link State Routing Algorithm
 - Each router keeps list of state of local links to network
 - Transmits update state info
 - Little traffic as messages are small and not sent often
 - RFC 2328
- Route computed on least cost based on user cost metric
Open Shortest Path First (2)

- Topology stored as directed graph
- Vertices or nodes
 - Router
 - Network
 - Transit
 - Stub
- Edges
 - Graph edge
 - Connect two router
 - Connect router to network

Sample AS
Operation

- Dijkstra’s algorithm used to find least cost path to all other networks
- Next hop used in routing packets
Integrates Services Architecture

- Changes in traffic demands require variety of quality of service
- Internet phone, multimedia, multicast
- New functionality required in routers
- New means of requesting QoS
- ISA
- RFC 1633
Internet Traffic

• Elastic
 — Can cope with wide changes in delay and/or throughput
 • FTP sensitive to throughput
 • E-Mail insensitive to delay
 • Network Management sensitive to delay in times of heavy congestion
 • Web sensitive to delay

• Inelastic
 — Does not easily adapt to variations
 — e.g. real time traffic

we will skip the rest of this chapter