Boeing 777

- Boeing 777 Primary Flight Computer
 - Paper: *Triple-Triple Redundant 777 Primary Flight Computer*
 » Y.C. Yeh
 » 1996 IEEE Aerospace Applications Conference
 » pg 293-307
Boeing 777

- Primary Flight Control Surfaces
Boeing 777

- **Overview**
 - Flight control system is a *Fly-by-Wire* (FBW) system.
 - Delayed Maintenance for major electronic Line Replacement Units (LRU)
 - Triple redundancy for all hardware
 » computing system
 » airplane electrical power
 » hydraulic power
 » communication paths
 - Primary Flight Computer (PFC) are the central computational elements of the FBW system.
 - PFC architecture is based on TMR
Boeing 777

- N-version dissimilarity integrated into TMR
 » 3 similar channels
 » each channel has 3 dissimilar computation lanes
 » software written in ADA (dissimilar compilers)
- DATAC bus, also known as ARINC 629 bus, is used for all communication between all computing systems for flight control functions.
 » DATEC = Digital Autonomous Terminal Access Communication
 » designed by Boeing
 » busses are isolated (physically and electrically)
 » DATACs are not synchronized
 » http://www.arinc.com
Boeing 777

- 777 FBW design philosophy
 - Considerations
 - common mode/common area fault
 - separation of FBW components
 - FBW functional separation
 - dissimilarity
 - FBW effect on the structure
 - Triple-dissimilarity for PFC processors and interface hardware
 - By nature of TMR no Byzantine faults allowed.
 - Avoidance of asymmetry by:
 - ARINC629 requirements
 - Deal with root causes of functions/communication asymmetry
Boeing 777

Flight Control Functions
- Control electric and electro-hydraulic actuators
- Provide manual and automatic control in pitch, roll and yaw axes
- Control pilot input: column, wheel, rudder pedals, speed brakes
- Pitch Control: 2 elevators and horizontal stabilizer
- Roll Control: 2 ailerons, 2 aperons, 14 spoilers
- Jaw Control: tabbed rudder
Boeing 777

- Three operation modes:

Table 1 777 Primary Flight Control Modes

<table>
<thead>
<tr>
<th>CONTROL MODE</th>
<th>PITCH</th>
<th>ROLL</th>
<th>YAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL CONTROL</td>
<td>CONTROL C* Maneuver Cmd with Speed Feedback</td>
<td>CONTROL Surface Cmds</td>
<td>CONTROL Surface Cmds Ratio Changer</td>
</tr>
<tr>
<td></td>
<td>Manual Trim for Speed Variable Feel</td>
<td>Manual Trim</td>
<td>Wheel/Rudder Cross Tie</td>
</tr>
<tr>
<td></td>
<td>ENVELOPE PROTECTION Stall</td>
<td>ENVELOPE PROTECTION Bank Angle</td>
<td>Manual Trim</td>
</tr>
<tr>
<td></td>
<td>Overspeed</td>
<td></td>
<td>Yaw Damping</td>
</tr>
<tr>
<td></td>
<td>AUTOPilot Backdrive</td>
<td>AUTOPilot Backdrive</td>
<td>Fixed Feel</td>
</tr>
<tr>
<td>SECONDARY CONTROL</td>
<td>CONTROL Surface Cmd (Augmented) Flaps Up/Down Gain</td>
<td>CONTROL Surface Cmds</td>
<td>CONTROL Surface Cmds, Flaps Up/Down Gain</td>
</tr>
<tr>
<td></td>
<td>Direct Stabilizer Trim Flaps Up/Down Feel</td>
<td>Manual Trim</td>
<td>PCU Pressure Reducer</td>
</tr>
<tr>
<td>DIRECT CONTROL</td>
<td>CONTROL Surface Cmd (Augmented) Flaps Up/Down Gain</td>
<td>CONTROL SurfaceCmds</td>
<td>Manual Trim</td>
</tr>
<tr>
<td></td>
<td>Direct Stabilizer Trim Flaps Up/Down Feel</td>
<td>Manual Trim</td>
<td>Fixed Feel</td>
</tr>
</tbody>
</table>

Sequence of events:

1) Actuator Control Electronics unit (ACE)
 - Position transducers (mounted on each pilot controller) sense pilot commands for the ACE
 » two actuator controlled feel units provide variable feel for control column
 » mechanical feel units provide fixed feel for wheel and paddles.
 - ACE performs A/D conversion
 - Transmits signals to PFCs via redundant ARINC 629 buses
Boeing 777

2) Primary Flight Computer
 - Receive inertial data from
 » Air Data Inertial Reference System (ADIRS)
 » Secondary Attitude and Air Data Reference Unit (SAARU)
 » ACE
 - Compute Control-Surface position commands
 - Transmit position commands back to ACE via ARINC 629 buses
3) Actuator Control Electronics unit
 - Receives digital command from PFC
 - D/A conversion
 - Control electro-hydraulic actuators of control surfaces
 - In Direct Mode, the ACEs use the analog pilot controller transducer signals to generate surface commands

- Line Replacement Unit (LRU)
 - PFC and ACE are the major LRU, connected via ARINC 629 buses
Boeing 777

- Actuator Control Electronics (ACE)
 - 4MR configuration
 - Interface between analog domain, e.g. crew controllers, electric/electro-hydraulic actuators, and digital domains, e.g. ARINC 629, PFCs
 - Controls all control surfaces
 - Controls variable feel actuators
 - 3 ARINC 629 interfaces
 - In *Direct Mode* commands on the digital bus are ignored => Provide direct surface control
Figure 3 Actuator Control Electronics Overview
Figure 4 777 Primary Flight Controls Hydraulic / ACE Distribution

© 2016 A.W. Krings
Boeing 777

- Primary Flight Computer (PFC)
 - TMR configuration
 - Receive data on all 3 ARINC 629 buses
 - Transmit on only one ARINC 629 bus
 - Each PFC contains 3 internal computation lanes
 - Each lane accesses all 3 buses
 - Each lane has dissimilar processors
 - Different Ada compilers
Boeing 777

Figure 5 Primary Flight Computer Channel Architecture
Boeing 777

- ARINC 629 Digital Data Bus
 - time division multiplex system, up to 120 users
 - terminal access is autonomous, terminal listens, waits for quite period and transmits

3 protocol timers
insure fair access
in round robin
fashion

Yeh96 fig.6
Boeing 777

- receiver listens to all traffic and determines which wordstrings are needed

![ARINC 629 Functional Block Diagram](image)
Boeing 777

- ARINC 629 bus requirements:
 » data bus availability requirements
 » tolerance to error occurrences of 1 in 10^8 bits
 » tolerance of aperiodic bus operation
 » transmission requirements to provide indication of output data freshness and to not output split-frame data
 » common CRC algorithm
Figure 8 FBW Forward Path Signal Monitor
Boeing 777

- Common Mode & Common Area Fault
 - Component and functional separation. Resistant to
 » maintenance crew error or mis-handling,
 » impact of objects, electric faults, electric power failure, electro-magnetic environment, lightning, hydraulic failure, structural damage
 - Separation of components
 » multiple equipment bays
 » physical separation, (including wiring)
 » separation of electrical and hydraulic line routing
Boeing 777

- Functional Separation
 - Left, Center, Right flight control electrical buses
 - Unit transmits on only 1 ARINC 629,
 - each unit transmits on its dedicated bus, but monitors the others
 - unit failure can effect only single bus
 - Distribution of actuator control,
 - i.e. L/C/R units control actuators using L/C/R respective buses.

- Dissimilarity
 - dissimilar microprocessors
 - dissimilar compilers
 - dissimilar control & monitor functions
 - dissimilar inertial data systems
 - ACE direct mode allowing bypassing of buses
Boeing 777

- **Safety Requirements**
 - PFC: probability of 10^{-10} /h for
 - functional integrity (active failures affecting plane structure)
 - functional availability (passive failures)
 - 10^{-10} /h for
 - all PFC operational
 - any single lane fault
 - 10^{-10} /h per auto-land operation for:
 - full operational system
 - single lane fault in any/all PFC
 - single PFC fault
 - single PFC fault & multiple single lane faults
 - No single fault should cause error without failure indication
 - No single fault should cause loss of > 1 PFC
Boeing 777

- Redundancy Management
 - PFC inter-lane communication within each PFC channel
 - Frame synchronization
 - (Input) Data synchronous operation
 - Median value selection
 - Cross-Channel Consolidation and Equalization
 - PFC external resource monitoring
 - In addition to ARINC bus: private cross-lane data bus for
 » frame synchronization within a PFC channel
 » data synchronization within a PFC channel
 » cross-lane data transfer
Redundancy Management: typical control path

Figure 9 PFC Redundancy Management Overview (Typical Control Path)
Figure 10 PFC Lane Redundancy Management (Output Signal Monitoring)
Boeing 777

- **Synchronization**
 - **Frame Synchronization**
 » to allow tight cross-lane monitoring
 » convergent (mid-point selection) frame synchronization
 » tight synchr. within a few microseconds (what about worse case?)
 - **Data Synchronization**
 » 2 MHz ARINC 629 => transmit duration > 20us
 » 20us >> frame synchronization time, thus giving sufficient time for data synchronization
 » all PFC lanes are synchronized to the same data set.
 ■ this data is then used at the beginning of each computation frame
 ■ allows tighter tracking between lanes
 » occasional PFC lane differences are tolerated
Boeing 777

- Monitoring

 Dual role of PFC lanes
 - Command role:
 » only one lane
 » will send proposed surface command to ARINC 629
 » output is result of median select
 » other ARINC 629 receive command from other PFCs
 - Monitor role:
 » "selected output" monitoring
 » cross-line inhibit hardware logic
 - Cross-Line and Cross-Channel monitoring
 - Critical discrete and variables are equalized between PFC channels