#### Based on:

 Redundancy Management Technique for Space Shuttle Computers, by Sklaroff, J., R., IBM Journal on Research and Development, Vol. 20, No. 1, pp. 20-28, January 1976.

#### General Purpose Computer (GPC)

- First operational use of *off-the-shelf* computers.
- First planned operational use of multiple simplex computers for faulttolerant purposes.
- Concept fight-proven in Tactical Aircraft Guidance research and development program (TAGS).
  - » TAGS: TMR helicopter fight control system
- Non-redundant (internal) processors in a fight-critical application.

#### Previous space program

- internally redundant computers
  - » considerable extra circuitry to provide fault-tolerance
  - » fault detection using logical comparisons at selected points in the data flow within the computer
- prime-backup configuration
- Saturn: redundancy at a modular level within the computer
- Skylab: dual computer in active/standby mode (in-orbit), relying on self-test techniques. Redundant hardware to switch to standby computer (2.75s switch-over time).

#### Periods of Risk:

- Boast Phase
- Reentry Phase
- Landing Phase
- System Architecture:
  - 5 Computers consisting of CPU/IOP pair
  - 28 Redundant interconnections busses
  - Critical operation:
    - » 4-NMR for flight critical operations (voting)
    - » 5 th for non-critical operations

- General Purpose Computer (GPC)
  - » Each GPC performs about 325000 ops/s during critical phases
  - » About 440 synchronization and cross-checks per second
  - » Physically distributed in 3 avionics bays
  - » Air cooled by 1 of 2 fans/bay (600W/GPC)
  - » CPU IBM AP-101B (AP-101S upgrade) 32bit processor
  - » IOP
    - Transformer-coupled to busses, which in turn are transformer-coupled to multiplexer/demultiplexer units (MDM). MDM contain A/D and D/A converters, interface with analog subsystems, e.g. flight control sensors and effectors.
    - 24 bi-directional bus channels
    - 1-MHz serial data
  - » Each individual channel
    - Command Mode (can read/write to bus)
    - Listen Mode (can only read from bus)

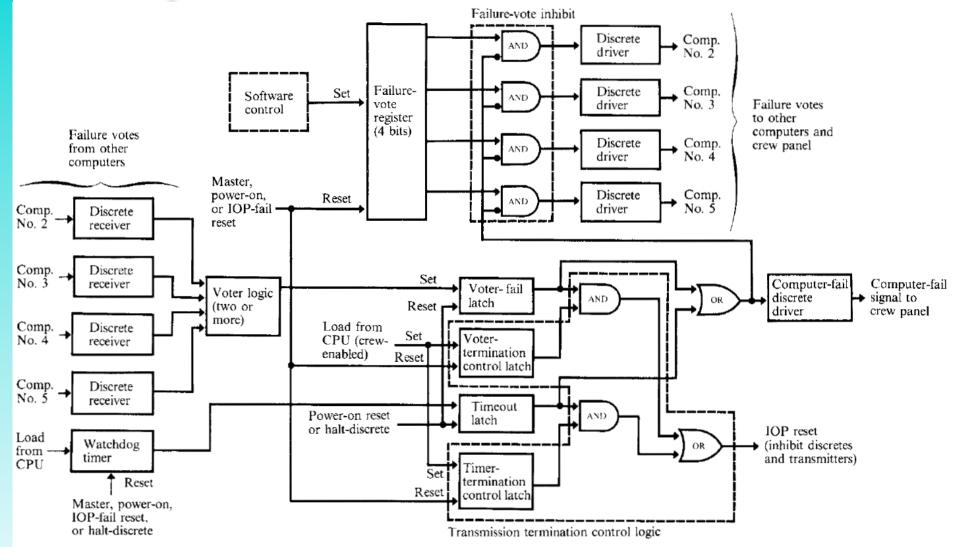
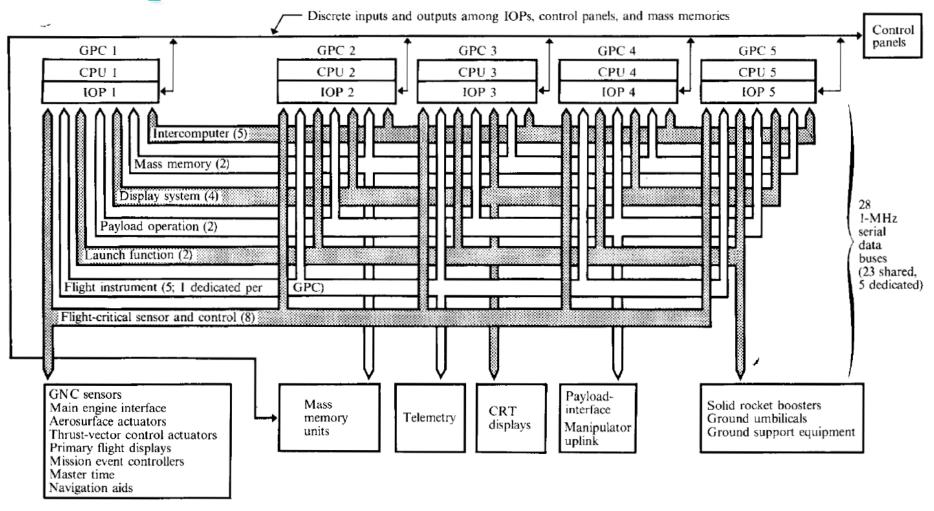




Figure 4 Dedicated redundancy management logic, shown for computer 1.

© 2007 A.W. Krings





#### Busses

- » Total 28 busses in 7 groups, grouped by function.
- » Subsystems have varying levels of redundancy at the unit level depending on their criticality.
  - e.g. 3 inertial measurement units, 2 radar altimeters, 4 air data transducer assemblies.
- » To prevent loss of more than one redundant units *no* two redundant units interface to the same bus.
- » Each Unit attached to the bus is addressable by a *command word*.
- » Some systems are internally redundant, e.g. hand controllers, actuators for main engine, main engine interface unit, mission event controllers.
- » These subsystems receive redundant commands on separate input channels.
- » Use internal algorithm to generate one output. Algorithms detect incorrect commands.

#### Actuator Voting Example: Aerosurface actuator

- » 4 independent servo channels driving a 4-element force-summed actuator.
- » Failure of any 3 of the 4 channels can be tolerated.
- » Hydraulic fault detection is provided by sensing pressure differential.
- » If more than 2 channels are fault free
  - faulty modules are automatically bypassed.
- » If only 2 channels operating
  - pressure difference is detected
  - resulting *standoff* is resolved by manual reset.
- » Actuator Voting
  - allows computer to transmit incorrect commands to critical subsystems for an indefinite number of cycles without causing adverse effects.
  - significantly relaxes fault detection time constraints

#### System Operation

- 4MR configuration => Redundant Set.
  - » Inter-Computer Channel (ICC)
    - 5 busses
    - 1 bus operates in command mode (one IOP permanently assigned command mode)
    - 4 remaining are in listening mode
  - » Flight-Critical Sensor and Control-Data-Bus
    - 2 subgroups of 4 busses
    - one IOP in redundant set assigned command mode in each subgroup
    - 3 remaining are in listening mode

#### Data Collection

- Inputs
  - » each redundant subsystem connected to different bus.
  - » "Command" computer requests data from all subsystems
  - » Returned Data available to all 4 computers (listen mode)
- Data Outputs
  - » each IOP connected to different bus
  - » each computer sends data to each of the voter-effector channels
  - » each computer listens to the command sent out by other computers

#### Communication

- Inter-Computer Communication
  - » uses Inter-computer group
  - » common cross checking
  - » error messages (accusations)
- Synchronization
  - » needed to avoid command divergence
  - » task level synchronization
  - » timing-skew, data-skew: synchronization via
    - inter-computer discrete signals
    - synchronization software



#### Redundancy Management: Requirements

- Faulty computer identified with 96 % coverage before assignment to the redundant set (extensive preliminary diagnostics)
  - » before lift-off
  - » before critical in-orbit phase
- Of 2 GPCs in the redundant set
  - » first 2 sequential faults must be automatically identified to the crew
  - » best practical diagnosis of third fault (1 of 2)
- System capable of automatically inhibiting all transmissions from faulty processor
  - » disabled at power-up
  - » enabled by crew
- No computer failure should cause another GPC to
  - » identify itself as failed
  - » generate an incorrect output
- Restoration of GPC excluded due to transient fault by crew in non-critical phase (Figure 3)

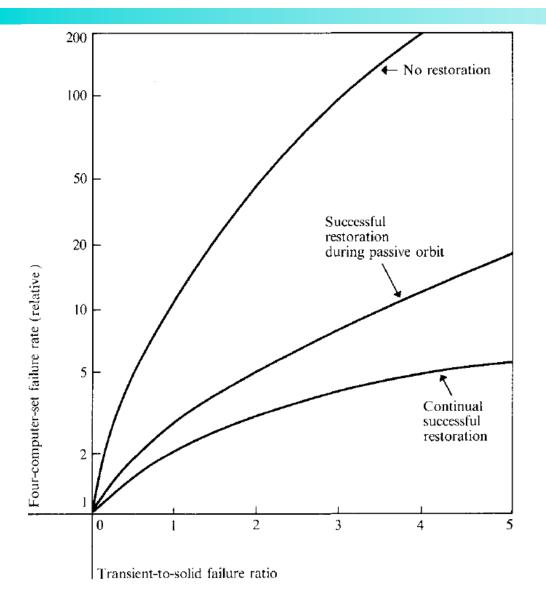



Figure 3 Effect of GPC transient failures on the computer-set failure rate as a function of restoration policy, in relation to the zero-transient failure rate. The operational-hour equivalents are 6.6, ascent; 128, passive orbit; 43, active orbit; and 4.4, reentry/landing.

#### Design Considerations for Redundancy Management

- Primary detection is Cross-Checking, using command and listen modes, process synchronization and grouping of busses
  - » Minimize the need to depend on the computer to detect and identify its own failure => use special hardware
  - » Use software to judge the "health" of other computers.
  - » Sum-checking of critical output => check-sum signature and compare signature word.
    - Motivated by insufficient processor power to compare all output.
  - » Transmit and compare word over Inter-computer buses. Then use built-intest-equipment (BITE) in each IOP to perform comparisons.
  - » Use test programs to generate faults which test BITE logic. (Guard the guardians)!