Fault Models

Much work has been done on fault models. The discussion is based on the paper:

- There is an interesting follow-up paper "Verification of Hybrid Byzantine Agreement Under Link Faults" by P. Lincoln and J. Rushby that addresses a problem in the algorithm of Thambidurai and Park.
Fault Models

◆ Benign versus Malicious
 - Benign
 » error is self-evident
 » component does not undergo incorrect state transition during failure
 » examples:
 ■ crash fault
 ■ timing fault
 ■ data out-of-bound

■ what about “omissions”?
Fault Models

- Malicious
 » not self-evident to all non faulty receivers
 » can behave in two ways
 » symmetric
 ▶ received identically by all processors
 » asymmetric
 ▶ no restrictions of fault => anything goes

- Fault frequency
 » worse case every fault could behave asymmetric
 » best case all faults are benign
 » what is the best assumption for your system?
Fault Models

- Fault Taxonomy

- Relationship & Probability of Occurrence
 - note: this is not a venn diagram!
Fault Models

- Lamport Model
 - assumes that every fault is asymmetric

\[N \geq 3t + 1 \]
\[r' \geq t + 1 \quad \text{or} \quad r \geq t \] rebroadcasts

- Meyer + Pradhan 87
 - differentiates between malicious and benign faults

\[N > 3m + b \]
\[r > m \]

\[m = \text{number of malicious faults} \]
\[b = \text{number of benign faults} \]
Fault Models

◆ Thambidurai + Park 88
 – difference between malicious faults
 » symmetric faults
 » asymmetric faults
 » result:

\[N > 2a + 2s + b + r \]

\[r \geq a \]

» a = asym., s = sym., b = benign, r = rounds
» in general \(a_{\text{max}} < s_{\text{max}} < b_{\text{max}} \)
» or \(\lambda_a << \lambda_s << \lambda_b \)
» saves rounds and hardware
Fault Models

◆ Advantages of multi-fault model
 − 1) more accurate model of the system
 » less “overly conservative”
 − 2) resulting reliabilities are better
 » custom tailor recovery mechanisms
 » Example:
 ■ consider Byzantine solution using OM() algorithm
 ■ assume $N = 4, 5, 6$
 ■ still, only one fault is covered using the OM algorithm
 ■ moreover, the system reliability degrades
 − $N = 6$ results in worse reliability than $N = 4$
 − one is better off to turn the additional processors off!
 » see paper Tha88, page 98, table 1
Fault Models

Source: Tha88

<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>P(Failure)</th>
<th>Faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG</td>
<td>4</td>
<td>6.0×10^{-8}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>BG</td>
<td>5</td>
<td>1.0×10^{-7}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>BG</td>
<td>6</td>
<td>1.5×10^{-7}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>UM</td>
<td>4</td>
<td>6.0×10^{-8}</td>
<td>1 arbitrary, $b = 0$, $s = 0$</td>
</tr>
<tr>
<td>UM</td>
<td>5</td>
<td>1.0×10^{-11}</td>
<td>1 arbitrary, $b = 1$, $s = 0$</td>
</tr>
<tr>
<td>UM</td>
<td>6</td>
<td>2.0×10^{-11}</td>
<td>1 arbitrary, $b = 0$, $s = 1$</td>
</tr>
<tr>
<td>UM</td>
<td>6</td>
<td>1.1×10^{-15}</td>
<td>1 arbitrary, $b = 2$, $s = 0$</td>
</tr>
</tbody>
</table>

Table 1: Reliability data for Example 1
Fault Models

Source: Tha88

<table>
<thead>
<tr>
<th>$\tau = 1$</th>
<th>s</th>
<th>$a = 0$</th>
<th>$a = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$b = 0$</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>$b = 1$</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>$b = 2$</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>$b = 3$</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>$b = 4$</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>$b = 5$</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>$b = 6$</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 2: Resiliency of a System based on the Unified Model (minimum number of processors required)
3) smarter degradation
 - we can specify the number of rounds
 - example using $N = 11$
 - let subscript \max denote the maximum number of faults covered, assuming this is the only type of fault occurring.
 - if $r = 1$ then $a_{\max} = 1$ or $s_{\max} = 4$
 - if $r = 2$ then $a_{\max} = 2$ or $s_{\max} = 4$

 why? $s_{\max} = 4 \Rightarrow N > 2 \cdot 4 + 2 = 10$

 $s_{\max} = 5 \Rightarrow N \neq 2 \cdot 5 + 2 = 12$

- requirements for success
 - good estimate of fail rates $\lambda_a, \lambda_s, \lambda_b$
 - typically $\lambda_a << \lambda_s << \lambda_b$
 - good estimate of recovery rates ρ_a, ρ_s, ρ_b
 - typically $\rho_a < \rho_s < \rho_b$
Agreement algorithms

- Azadmanesh & Kieckhafer
 - partitions further into transmissive and omissive cases of malicious faults
Agreement algorithms

◆ Incomplete Interconnections
 - Lam82, Dol82
 - agreement only if the number of processors is less than 1/2 of the connectivity of the system’s network.

◆ Eventual vs. Immediate Byz. Agreement (EBA, IBA)
 - recall interactive consistency conditions IC1, IC2
 - an agreement is immediate if in addition to IC1 and IC2 all correct processors also agree (during the round) on the round number at which they reach agreement.
 - otherwise the agreement is called eventual
 » each processor has decided on its value, but cannot synchronize its decision with that of the others until some later phase.
 » Thus, agreement may not always need full t+1 rounds
Agreement algorithms

- Lamport OM \[N \geq 3m + 1 \quad r = m + 1 \]
- Lamport SM \[N \geq m + 2 \quad r \geq m + 1 \]
- Davis+Wakerly \[N \geq 2t + 1 \quad S = t + 1 \]
- Meyer+Pradhan \[N > 3m + b \quad r \geq m \]
- Thambidurai+Park \[N > 2a + 2s + b + r \quad r \geq a \]
- Dol82a (EBA) \[N > t^2 + 3t + 4 \quad r = \min(f + 2, t + 1) \]