Signed Messages

- Traitors ability to lie makes Byzantine General Problem so difficult.
- If we restrict this ability, then the problem becomes easier.
- Use authentication, i.e. allow generals to send unforgeable signed messages.
Signed Messages

Assumptions about Signed Messages

A1: every message that is sent is delivered correctly
A2: the receiver of a message knows who send it
A3: the absence of a message can be detected
A4: a loyal general’s signature cannot be forged, and any alteration of the contents of his signed messages can be detected. Anyone can verify the authenticity of a general’s signature

Note: no assumptions are made about a traitor general, i.e. a traitor can forge the signature of another traitor.
Signed Messages

- Signed message algorithm assumes a choice function
 - if a set V has one single element v, then $\text{choice}(V) = v$
 - $\text{choice}(\emptyset) = R$, where \emptyset is the empty set
 » RETREAT is default
 - $\text{choice}(\text{A},R) = R$
 » RETREAT is default
 - set V is not a multiset (recall definition of a multiset)
 - thus set V can have at most 2 elements, e.g. $V = \{\text{A},R\}$.
Signed Messages

◆ Signing notation
 - let v:i be the value v signed by general i
 - let v:i:j be the message v:i counter-signed by general j
◆ each general i maintains his own set V_i containing all orders he received
◆ Note: do not confuse the set V_i of orders the general received with the set of all messages he received. Many different messages may have the same order.
BGP: Signed Message Solution

SM(m) -- from Lam82

Initially $V_i = \emptyset$

1) The commander signs and sends his value to every lieutenant
2) For each i

 A) If lieutenant i receives a message of the form $v:0$ from the commander and he has not yet received any order, then
 i) he lets V_i equal \{v\}
 ii) he sends the message $v:0:i$ to every other lieutenant

 B) If lieutenant i receives a message of the form $v:0:j_1:...:j_k$ and v is not in the set V_i, then
 i) he adds v to V_i
 ii) if $k<m$, then he sends the message $v:0:j_1:...:j_k:i$ to every lieutenant other than $j_1, ..., j_k$
Algorithm SM(m)

- The SM(m) algorithm for signed messages works for

\[N \geq m + 2 \]
- i.e. want non faulty commander and at least one non faulty lieutenant

- How does one know when one does not receive any more messages?
 - by *missing message assumption* A3, we can tell when all messages have been received
 - this can be implemented by using synchronized rounds

- Now traitor can be detected!
 - e.g. 2 correctly signed values => general is traitor
Algorithm $SM(m)$

- example, general is traitor

![Diagram of a decision tree with two lieutenants and a general, showing the labels: attack:0, attack:0:1, retreat:0, and retreat:0:2.]
Algorithm $SM(m)$

- example, lieutenant 2 is traitor
Algorithm SM(m)

* example:
 - SM(0)
 » general sends $v:0$ to all lieutenants
 » processor i receives $v:0$ \(V_i = \{v\} \)
 - SM(1)
 » each lieut. countersigns and rebroadcasts $v:0$
 » processor i receives ($v:0:1$, $v:0:2$, ..., $v:0:(N-1)$)
Algorithm SM(m)

- case 1: commander loyal, lieutenant $j = \text{traitor}$
 » all values except $v:0:j$ are v

 $\Rightarrow v \in V_i \; \forall$ loyal lieut. i

 » processor j cannot tamper

 $\Rightarrow V_i = \{v\} \; \forall$ loyal lieut. i

- case 2: commander = traitor, \Rightarrow all lieut. loyal
 » all lieutenants correctly forward what they received
 - agreement: yes
 - validity: N/A
Algorithm SM(m)

- e.g.:
 - SM(2)
 » each lieut. countersigns and rebroadcasts all messages from the previous round
 » processor i has/receives
 - $v:0$
 - $v:0:1, v:0:2, ... , v:0:(N-1)$
 - $v:0:1:1, v:0:1:2, v:0:1:3, ... , v:0:1:N-1$
 - $v:0:2:1, v:0:2:2, v:0:2:3, ... , v:0:2:N-1$
 - ...
 - $v:0:N-1:1, v:0:N-1:2, v:0:N-1:3, ... , v:0:N-1:N-1$

original message

original message after 1st rebroadcast

after 2nd rebroadcast
Algorithm SM(m)

- case 1: commander loyal, 2 lieutenants are traitors
 » want each loyal lieut to get $V=\{v\}$
 » round 0 \implies all loyal lieuts get v from commander
 » other rounds:
 ■ traitor cannot tamper
 ■ \implies all messages are v or Φ

- case 2: commander traitor + 1 lieut. traitor
 » round 0: all loyal lieuts receive $v:0$
 » round 1:
 ■ traitors send one value or Φ
 » round 2:
 ■ another exchange (in case traitor caused split in last round)
 ■ traitor still can not introduce new value
 \implies agreement: yes
 validity: N/A
Algorithm SM(m)

- Cost of signed message
 - encoding one bit in a code-word so faulty processor cannot “stumble” on it.
 - e.g.
 - unreliability of the system \(F_S = 10^{-10}/h \)
 - unreliability of single processor \(F_P = 10^{-4}/h \)
 - want: Probability of randomly generated valid code word

\[
P = \frac{10^{-10}}{10^{-4}} = 10^{-6} \approx 2^{-20}
\]

- given \(2^i \) valid codewords, want \((20+i) \) bits/signature
- e.g. Attack/Retrieve

=> \(2^1 \)
=> 21 bit signature
Agreement

◆ Important notes:
 – there is no way to guarantee that different processors will get the same value from a possibly faulty input device, except having the processors communicate among themselves to solve the Byz.Gen. Problem.
 – faulty input device may provide meaningless input values
 » all that Byz.Gen. solution can do is guarantee that all processors use the same input value.
 » if input is important, then use redundant input devices
 » redundant inputs cannot achieve reliability. It is still necessary to insure that all non-faulty processors use the redundant data to produce the same output.
Agreement

- Implementing BGP is no problem
- The problem is implementing a message passing system that yields respective assumptions, i.e.:
 A1: every message that is sent is delivered correctly
 A2: the receiver of a message knows who send it
 A3: the absence of a message can be detected
 A4: a loyal general’s signature cannot be forged, and any alteration of the contents of his signed messages can be detected. Anyone can verify the authenticity of a general’s signature