Petri Nets

 Definitions

- **Source Transition:** a transition without any input place
 » is unconditionally enabled

- **Sink Transition:** a transition without any output place
 » consumes but does not create any tokens

- **Self-Loop:** P is both an input and output place of T

- **Pure Petri Net:** does not contain self-loops

- **Ordinary Petri Net:** all of the arc weights are unity, i.e. one.

- **Infinite Capacity Net:** assumes that each place can accommodate an unlimited number of tokens

- **Finite Capacity Net:** max. token-capacity $K(P)$ defined for each P

- **Strict Transition Rule:** finite capacity net with additional rule that the number of tokens in each output place P of T cannot exceed its capacity $K(P)$ after firing T.
Petri Nets

◆ Modeling Constructs

- Concurrency

- Precendence

- Conflict, choice or decision
 » function: “exclusive OR”
 » only one transition can fire
 » weight: probability of taking that arc
Petri Nets

◆ Modeling Constructs
 – Synchronization
 » AND
 » joining several paths into a single path
Example

Fig. 8. A Petri net showing a dataflow computation for $x = \frac{a + b}{a - b}$.

If $a - b \neq 0$ then x is defined.

If $a - b = 0$ then x is undefined.
Example

Fig. 9. A simplified model of a communication protocol.
Petri Nets

◆ Modeling Constructs
 - Time
 » need new concept => timed transition
 » timed transition has firing delay T
 » when transition is enabled, wait T, then fire
 - tokens are consumed and created at the firing instance
 » timed Petri Net symbol
 └── T

◆ Stochastic Petri Net
 - T is not fixed
 - T = random variable with exponential distribution
Petri Nets

- Generalized Stochastic Petri Nets (GSPN)
 Adds extra constructs
 - Mixed transitions
 » stochastic and instantaneous transitions
 - Multiple Arcs

same as

» needs 2 tokens to fire
Petri Nets

- Generalized Stochastic Petri Nets (cont.)
 - Inhibitory Arcs
 » token inhibits firing
 » obviously no token transfer
 » watch for deadlocks!

- Multiple Inhibitory Arcs
 » needs at least N tokens to inhibit firing
 » less than N tokens => transition is firable
Petri Nets

➤ Reachability
- fundamental basis for studying the dynamic properties of any system
- firing of enabled transition will change token distribution
- sequence of firings results in sequence of markings
- marking M_n is reachable from M_0 if there exists a sequence of firings that transforms M_0 into M_n
- firing sequence is denoted by
 » $\sigma = M_0 t_1 M_1 t_2 ... t_n$ or simply $\sigma = t_1 t_2 ... t_n$
 » in this case M_n is reachable from M_0 by σ
- the set of all possible markings reachable from M_0 in a net (N,M_0) is denoted by $R(N,M_0)$ or simply $R(M_0)$
- the set of all possible firing sequences from M_0 in a net (N,M_0) is denoted by $L(N,M_0)$ or simply $L(M_0)$
Petri Nets

◆ Reachability Graph
 - Petri Net with initial marking
 \[M(t_0) = \{m_1, m_2\} = \{2,0\} \]
 - Reachability Graph

» add transitions to graph and…
» Markov chain

© 2016 A.W. Krings
Petri Nets

- Reachability Graph
 - Petri Net with initial marking
 \[M(t_0) = \{m_1, m_2, m_3\} \]
 - Reachability Graph

![Petri Net Diagram]
Petri Nets

- Boundedness
 - A Petri net \((N, M_0)\) is said to be \(k\)-bounded (or simply bounded) if the number of tokens in each place does not exceed a finite number \(k\) of any marking reachable from \(M_0\), i.e., \(M(p) \leq k\) for every place \(p\) and every marking \(M \in R(M_0)\).
 - Example of 2-bound net
Petri Nets

- **Liveness**
 - closely related to the complete absence of deadlock in OS
 - A Petri net \((N, M_0)\) is said to be *live* (or equivalently \(M_0\) is said to be a *live* marking of \(N\)) if, no matter what marking has been reached from \(M_0\), it is possible to ultimately fire *any* transition of the net by progressing through some further firing sequence.

A live Petri net guarantees deadlock-free operation, no matter what firing sequence is chosen.

However, this property is costly to verify, e.g. for large systems.
Petri Nets

- How did we get the net of the candy machine?
 - identify places needed
Petri Nets

- Example: candy machine
 - identify paths from places to places and the events that get you there (interpret the numbers as “deposit x cents”.

![Petri Net Diagram]

get 15c candy

get 20c candy
Petri Nets

- Example: candy machine
 - transition events: “deposit x cents”

```
get 15c candy
```

```
get 20c candy
```

```
``
Petri Nets

- Example: candy machine
  - final Petri net

![Petri Net Diagram]

© 2016 A.W. Krings
**GSPN**

- `gspn model name (opt. param. list)` (See language description)
  - 1. List all places and initial marking
    » `place-name expr` for init num of tokens
  - 2. List all timed trans. and rates
    » `trans-name ind expr` for rate
    » `trans-name dep place-name expr` for base rate
  - 3. List instant. trans. and branch weights
    » `trans-name ind expr` for weight
    » `trans-name dep place-name expr` for base weight
  - 4. List all place to trans. arcs
    » `place-name trans-name expr` for mult.
  - 5. List all trans. to place arcs
    » `trans-name place-name expr` for mult.
  - 6. List all inhibitory arcs
GSPN

- Some general notes
  - Recall: reachability graph is Markov.
  - Most functions compute CDF of “time to absorption” in reachability graph.
  - Must ensure net is “dead" at desired point, e.g.:
    » when 1st token enters “Failure" place,
    » when exactly k-of-N nodes are faulty,
    » when exactly k-of-N nodes are still up,
  - Need Inhibitory arcs from “Failure” back to all timed transitions.
    » Causes net to become dead at instant of failure.
    » Otherwise absorption could occur well after failure.
GSPN

- **Useful Functions**
  - `etokt (t; model name, place-name {}; args)`
    » Expected num of tokens in place at time t.
  - `etok (model name, place-name {}; args)`
    » Steady state average of same thing (no t parameter).
  - `preemptyt (t; model name, place-name {}; args)`
    » Probability place is empty at time t,
    » Useful for tracking failure modes,
    » Warning: Do not use ( 1- preemptyt ) !!!
  - `preempty (model name, place-name {}; args)`
    » Steady state average of same thing (no t parameter).
GSPN

- **Useful Functions**
  - `tput`, `tputt`, `taveputt`
    - Difference is point-in-time of analysis.
    - Function:
      - The “throughput” of a transition
      - The “firing rate” of the transition
    - More useful in Performance models (jobs/sec).
    - `tput`: throughput for transition
    - `tputt`: throughput for transition at time $t$
    - `taveputt`: time-averaged throughput of a transition during interval $(0,t)$
GSPN

- **Useful Functions**
  - *util, utilt, taveutil*
    - Difference is point-in-time of analysis
    - Function:
      - The “utilization” of a timed transition
      - The fraction of time it is enabled.
      - Also useful in Performance models (proc. util).
    - *util*: utilization for a transition
    - *utilt*: utilization for a transition at time *t*
GSPN Example

- K-of-N System: Model A
* SYSTEM: K of N SYSTEM. ALTERNATE MODEL DEMONSTRATION
* MODELS: GSPN

epsilon results 1.0*10^(-11)
epsilon basic   1.0*10^(-13)
format 3

*------------------------- MODEL DEFINITION -- MODEL A
gspn KofN_A (K,N)
*
* 1. INITIAL MARKING M(0) ...................................... P_NAME TOKENS
n_up  N
n_dn  0
end
*

* 2. TIMED TRANSITIONS ........... T_NAME ind RATE (or) T_NAME dep P_NAME RATE
flt dep n_up lambda
end
*

* 3. INSTANT. TRANSITIONS .... T_NAME ind WEIGHT (or) T_NAME dep P_NAME WEIGHT
end
*

* 4. PLACE - TRANS ARCS ................................... P_NAME T_NAME MULT
n_up flt 1
end
*

* 5. TRANS - PLACE ARCS ................................... T_NAME P_NAME MULT
flt n_dn 1
end
*

* 6. INHIBITORY ARCS ...................................... P_NAME T_NAME MULT
n_dn flt (N-K+1)
end
GSPN Example

◆ K-of-N System: Model B
*------------------------- MODEL DEFINITION -- MODEL B

gspn KofN_B (K,N)
*
* 1. INITIAL MARKING M(0) ...................................... P_NAME TOKENS
n_up N
n_dn 0
SYS FAIL 0
end
*
* 2. TIMED TRANSITIONS .......... T_NAME ind RATE (or) T_NAME dep P_NAME RATE
flt dep n_up lambda
end
*
* 3. INSTANT. TRANSITIONS .... T_NAME ind WEIGHT (or) T_NAME dep P_NAME WEIGHT
fail sys ind 1
end
*
* 4. PLACE - TRANS ARCS ..................................... P_NAME T_NAME MULT
n_up flt 1
n_dn fail_sys (N-K+1)
end
*
* 5. TRANS - PLACE ARCS ..................................... T_NAME P_NAME MULT
flt n_dn 1
fail_sys SYS FAIL 1
end
*
* 6. INHIBITORY ARCS ................................. P_NAME T_NAME MULT
SYS FAIL flt 1
end
GSPN Example

- K-of-N System: Model C
*--------------------------- MODEL DEFINITION -- MODEL C

gspn KofN_C (K,N)
*
* 1. INITIAL MARKING M(0) ..................................... P_NAME TOKENS
n_up N
n_dn 0
sys_up 1
SYS_FAIL 0
end
*
* 2. TIMED TRANSITIONS ........ T_NAME ind RATE (or) T_NAME dep P_NAME RATE
flt dep n_up lambda
end
*
* 3. INSTANT. TRANSITIONS .... T_NAME ind WEIGHT (or) T_NAME dep P_NAME WEIGHT
fail_sys ind 1
end
*
* 4. PLACE - TRANS ARCS ................................... P_NAME T_NAME MULT
n_up flt 1
sys_up fail_sys 1
end
*
* 5. TRANS - PLACE ARCS .................................... T_NAME P_NAME MULT
flt n_dn 1
fail_sys SYS_FAIL 1
end
*
* 6. INHIBITORY ARCS ...................................... P_NAME T_NAME MULT
n_up fail_sys K
SYS_FAIL flt 1
end