Petri Nets

- Part of this discussion is based on the paper
 - *Petri Nets: Properties, Analysis and Applications*

- Petri Nets
 - graphical and mathematical modeling tool
 - tool for describing systems characterized as being:
 » concurrent, asynchronous, distributed, parallel, nondeterministic
 and/or stochastic
Petri Nets

- **History**
 - **1962:** Carl Adam Petri’s submitted his dissertation at the Uni. Darmstadt, Germany
 - **1970:** early development was published by A.W. Host and in the records of the 1970 Project MAC Conference on Concurrent Systems and Parallel Computation
 - **1970-75:** Computation Structure Group and MIT was most active
 - **1975:** conference on Petri Nets and Related Methods at MIT
 - **1979:** 135 researchers assembled in Hamburg, Germany, for 2-week advanced course on General Net Theory of Processes and Systems
 - **1980:** first European Workshop on Applications and Theory of Petri Nets, Strasbourg, France.
 - check out Murata’s paper for the extensive literature discussion
Petri Nets

◆ General:
 - directed, weighted, bipartite graph
 - two kinds of notes (Places P, Transitions T)
 - arcs from P to T or from T to P
 - arcs have integer weights
 - non-negative Place weights are called tokens
Petri Nets

- A Petri Net is a 5-touple $PN = \{P, T, A, W, M_0\}$
- Place Set $P = \{p_1, p_2, ..., p_m\}$
 - finite set of places
 - condition = place
 - one condition or set of atomic conditions
 - symbol

- Transition Set $T = \{t_1, t_2, ..., t_n\}$
 - finite set of transitions
 - action = transition
 - one action or set of atomic transitions
 - symbol
Petri Nets

◆ Arc Set $A \subseteq (P \times T) \cup (T \times P)$
 - set of directed arcs
 - edge of graph = arc
 - symbol \rightarrow

◆ Weight Function $W = A \rightarrow \{1, 2, 3, \ldots\}$
 - weights are associated with arcs

◆ Initial Marking $M_0 = P \rightarrow \{0, 1, 2, \ldots\}$
 - the initial assignment of tokens to places
Petri Nets

◆ example

[Diagram of Petri Nets]
Petri Nets

- Dynamic Behavior
 - during simulation of a petri net the state of the net may change
 - change of state:
 » transitions can be enabled
 » enabled transitions may fire
 » firing transition changes the marking of the net
 » the marking is the “snap-shot” of all the tokens
Petri Nets

❖ Firing rules
 – A transition \(T \) is said to be *enabled* if each input place \(P \) is marked with at least \(W(P,T) \) tokens
 » \(W(P,T) \) is the weight of the arc from \(P \) to \(T \)
 – An enabled transition may or may not fire (depending on whether or not the event actually takes place).
 – A *firing* of an enabled transition \(T \) removes \(W(P,T) \) tokens from each input place \(P \) of \(T \), and adds \(W(T,P) \) tokens to each output place \(P \) of \(T \)
 » \(W(T,P) \) is the weight of the arc from \(T \) to \(P \)

 – Common misconception: When a transition fires, it does **not** move tokens
 » i.e. the number of tokens in the system is not necessarily constant
Petri Nets

- Example: assume the following initial marking
 - Only one transition is enabled, i.e. t_2
Petri Nets

- Now several transitions are enabled, i.e. t_1, t_3 and t_5
- if t_1 fires first
Petri Nets

- if t_3 fires first
Petri Nets

- if t_5 fires first
- t_3 and t_5 are said to be in conflict
Petri Nets

- what could this Petri net represent?
Petri Nets

- Marking: Number and placement of tokens
 - let $m_i = \# \text{ of tokens in place } p_i$
 - then marking
 $$M = \{m_1, m_2, \ldots, m_n\}$$
 - marking -- system state
 - Advantage: economy of model
 » e.g. assume net with 6 places
 ■ we limit each place to maximal 1 token
 ■ then there are 2^6 possible markings
 ■ \Rightarrow 64 states
 ■ thus Petri Nets are a lot smaller than state diagrams, i.e. Markov chains
Petri Nets

- **Firing rules**
 - transition 1, 3 and 4 are enabled
Petri Nets

- Firing rules
 - transition 4 fires
Petri Nets

- Firing rules
 - transition 1 fires
Petri Nets

- Firing rules
 - transition 3 fires