Information Redundancy

- Code, codeword, binary code
- Error detection, error correction
- Hamming distance:
 - number of bits in which two words differ
- Odd/even parity
 - the total number of 1s is odd/even
- Basic parity approaches
 - bit-per-word
 - bit-per-byte
 - bit-per-chip
 - bit-per-multiple-chips
 - interlaced parity
Error Detection/Correction

Let’s look at an old principle to error correction
- Hamming Code
- any computer organization book will be a good reference
 » e.g. William Stallings’ Computer Organization and Architecture
- rely on check bits to identify whether bit has been changed
- identification of changed bit allows for correction
Overlapped Parity

<table>
<thead>
<tr>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Check Bit

Data Bit

\[2^k - 1 \geq m + k\]

\(m = \text{data bits}\)

\(k = \text{parity bits}\)
Overlapped Parity

- Syndrome is derived from comparing, i.e. XOR, transmitted and received/recomputed check bits.
- Syndrome has following characteristics (previous example)
 - if syndrome contains all 0’s
 » no error has been detected
 - if syndrome contains one and only one bit set to 1
 » error has occurred in one of the 4 check bits
 - if syndrome contains more than one bit set to 1
 » numerical value of the syndrome indicates the position of the data-bit error
 » this bit is then inverted for correction
Compute Check

\[
\begin{array}{cccccccc}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
\end{array}
\]

C4 C3 C2 C1 Check Bit

D8 D7 D6 D5 D4 D3 D2 D1 Data Bit

\[
\begin{align*}
C1 &= D1 \oplus D2 \oplus D4 \oplus D5 \oplus D7 \\
C2 &= D1 \oplus D3 \oplus D4 \oplus D6 \oplus D7 \\
C3 &= D2 \oplus D3 \oplus D4 \oplus D8 \\
C4 &= D5 \oplus D6 \oplus D7 \oplus D8
\end{align*}
\]
Overlapped Parity

Example

- data = 1110 0001
- compute check bits:

\[
C_1 = D_1 \oplus D_2 \oplus D_4 \oplus D_5 \oplus D_7 \\
C_2 = D_1 \oplus D_3 \oplus D_4 \oplus D_6 \oplus D_7 \\
C_3 = D_2 \oplus D_3 \oplus D_4 \oplus D_8 \\
C_4 = D_5 \oplus D_6 \oplus D_7 \oplus D_8
\]

\[
C_1 = 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0 \quad \text{least significant bit} \\
C_2 = 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1 \\
C_3 = 0 \oplus 0 \oplus 0 \oplus 1 = 1 \\
C_4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1 \quad \text{most significant bit}
\]
Overlapped Parity

Example
- data sent is 1110 0001 and transmitted check bits are 1110
- assume received data is: 01100001
 - note that most sig. bit has been corrupted/flipped
- received check bits are: 1110
- recomputed check bits:

 \[
 C_1 = 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0 \\
 C_2 = 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1 \\
 C_3 = 0 \oplus 0 \oplus 0 \oplus 0 = 0 \\
 C_4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0 \\
 \]

 - Syndrome: 1110 XOR 0010 = 1100
Applying Syndrome

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

C4 C3 C2 C1 Check Bit
D8 D7 D6 D5 D4 D3 D2 D1 Data Bit

Syndrome 1100 detects D8 as faulty
m-of-n codes

- All code words are \(n \) bits in length and contain exactly \(m \) 1s
- Simple implementation:
 - add/append second data word
 - select word such that code word contains \(m \) 1s
 - code is separable
 - 100% overhead
- Hamming distance is 2
 - e.g. 1st error sets bit, 2nd error resets other bit
Checksum

- Separable code to achieve error detection capability
- Checksum is the sum of the original data
- Single-precision checksum
 - overflow problem, i.e. adding n bits modulo 2^n
- Double-precision checksum
 - uses double precision, i.e. compute $2n$-bit checksum from n-bit words using modulo-2^{2n} arithmetic.
- Honeywell checksum
 - compose word of double length by concatenating 2 consecutive words
 - compute checksum on these double words
- Residue checksum
 - like single-precision checksum, but overflow is now fed back as carry
Cyclic codes

- Cyclic Redundancy Checks (CRC)
 - Parity bits still subject to burst noise, uses large overhead (potentially) for improvement of 2-4 orders of magnitude in probability of detection.
 - CRC is based on a mathematical calculation performed on message. We will use the following terms:
 - \(M \) - message to be sent (\(k \) bits)
 - \(F \) - Frame check sequence (FCS) to be appended to message (\(n \) bits)
 - \(T \) - Transmitted message includes both \(M \) and \(F \)
 \[\Rightarrow (k+n \text{ bits}) \]
 - \(G \) - a \(n+1 \) bit pattern (called generator) used to calculate \(F \) and check \(T \)
Cyclic codes

◆ Idea behind CRC
 – given a k-bit frame (message)
 – transmitter generates a n-bit sequence called frame check sequence (FCS)
 – so that resulting frame of size $k+n$ is exactly divisible by some predetermined number

◆ Multiply M by 2^n to shift and add F to padded 0s

\[T = 2^n M + F \]
Cyclic codes

- Dividing $2^n M$ by G gives quotient and remainder

$$\frac{2^n M}{G} = Q + \frac{R}{G}$$

then using R as our FCS we get

$$T = 2^n M + R$$

on the receiving end, division by G leads to

$$\frac{T}{G} = \frac{2^n M + R}{G} = Q + \frac{R}{G} + \frac{R}{G} = Q$$

Note: mod 2 addition, no remainder
Cyclic codes

- Therefore, if the remainder of dividing the incoming signal by the generator G is zero, no transmission error occurred.
- Assume $T + E$ was received (Note: E is the error)

\[
\frac{T + E}{G} = \frac{T}{G} + \frac{E}{G}
\]

since T/G does not produce a remainder, an error is detected only if E/G produces a non-zero value
Cyclic codes

- example, assume generator $G(X)$ has at least 3 terms
 - $G(x)$ has three 1-bits
 » detects all single bit errors
 » detects all double bit errors
 » detects odd #’s of errors if $G(X)$ contains the factor $(X + 1)$
 - any burst errors $< \text{length of FCS}$
 - most larger burst errors
 - it has been shown that if all error patterns likely, then the likelihood of a long burst not being detected is $1/2^n$
Cyclic codes

- What does all of this mean?
 - A polynomial view:
 » View CRC process with all values expressed as polynomials in a dummy variable X with binary coefficients, where the coefficients correspond to the bits in the number.
 ▪ for $M = 110011$ we get $M(X) = X^5 + X^4 + X + 1$
 ▪ for $G = 11001$ we get $G(X) = X^4 + X^3 + 1$
 ▪ Math is still mod 2
 » An error $E(X)$ is received and undetected iff it is divisible by $G(X)$
Cyclic codes

- **Common CRCs**
 - CRC-12 = \(X^{12} + X^{11} + X^3 + X^2 + X + 1 \)
 - CRC-16 = \(X^{16} + X^{15} + X^2 + 1 \)
 - CRC-CCITT = \(X^{16} + X^{12} + X^5 + 1 \)
 - CRC-32 = \(X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1 \)

- **Hardware Implementation:**

\[
G(X) = 1 + a_1 X + a_2 X^2 + \cdots + a_{n-1} X^{n-1} + a_n X^n
\]