Fault Models

- Much work has been done on fault models. The discussion is based on the paper:
 - There is an interesting follow-up paper "Verification of Hybrid Byzantine Agreement Under Link Faults" by P. Lincoln and J. Rushby that addresses a problem in the algorithm of Thambidurai and Park

Fault Models

- Benign versus Malicious
 - Benign
 - error is self-evident
 - component does not undergo incorrect state transition during failure
 - examples:
 - crash fault
 - timing fault
 - data out-of-bound
 - what about “omissions”?
Fault Models

- Malicious
 - not self-evident to all non faulty receivers
 - can behave in two ways
 - symmetric
 - received identically by all processors
 - asymmetric
 - no restrictions of fault => anything goes

- Fault frequency
 - worse case every fault could behave asymmetric
 - best case all faults are benign
 - what is the best assumption for your system?

Fault Models

- Fault Taxonomy

 Fault
 ▶ Benign
 ▶ Malicious
 ▶ Symmetric
 ▶ Asymmetric

- Relationship & Probability of Occurrence
 - note: this is not a venn diagram!

Asymmetric Symmetric Benign
Fault Models

- Lamport Model
 - assumes that every fault is asymmetric

\[N \geq 3t + 1 \]
\[r' \geq t + 1 \quad \text{or} \quad r \geq t \text{ rebroadcasts} \]

- Meyer + Pradhan 87
 - differentiates between malicious and benign faults

\[N > 3m + b \]
\[r > m \]
\[m = \text{number of malicious faults} \]
\[b = \text{number of benign faults} \]

Fault Models

- Thambidurai + Park 88
 - difference between malicious faults
 - symmetric faults
 - asymmetric faults
 - result:

\[N > 2a + 2s + b + r \]
\[r \geq a \]

- \(a = \text{asym.}, \ s = \text{sym.}, \ b = \text{benign}, \ r = \text{rounds} \)
- in general \(a_{\text{max}} < s_{\text{max}} < b_{\text{max}} \)
- or \(\lambda_a << \lambda_s << \lambda_b \)
- saves rounds and hardware
Fault Models

- Advantages of multi-fault model
 - 1) more accurate model of the system
 » less “overly conservative”
 - 2) resulting reliabilities are better
 » custom tailor recovery mechanisms
 » Example:
 ■ consider Byzantine solution using OM() algorithm
 ■ assume N = 4, 5, 6
 ■ still, only one fault is covered using the OM algorithm
 ■ moreover, the system reliability degrades
 - N = 6 results in worse reliability than N = 4
 - one is better off to turn the additional processors off!
 » see paper Tha88, page 98, table 1

Fault Models

Source: Tha88

<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>P(Failure)</th>
<th>Faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG</td>
<td>4</td>
<td>6.0×10^{-8}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>BG</td>
<td>5</td>
<td>1.0×10^{-7}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>BG</td>
<td>6</td>
<td>1.5×10^{-7}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>UM</td>
<td>4</td>
<td>6.0×10^{-8}</td>
<td>1 arbitrary, $b = 0, s = 0$</td>
</tr>
<tr>
<td>UM</td>
<td>5</td>
<td>1.0×10^{-11}</td>
<td>1 arbitrary, $b = 1, s = 0$</td>
</tr>
<tr>
<td>UM</td>
<td>6</td>
<td>2.0×10^{-11}</td>
<td>1 arbitrary, $b = 0, s = 1$</td>
</tr>
<tr>
<td>UM</td>
<td>6</td>
<td>1.1×10^{-15}</td>
<td>1 arbitrary, $b = 2, s = 0$</td>
</tr>
</tbody>
</table>

Table 1: Reliability data for Example 1
Fault Models

Source: Tha88

<table>
<thead>
<tr>
<th>τ = 1</th>
<th>a = 0</th>
<th>a = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0 1 2 3</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>b = 0</td>
<td>4 6 8</td>
<td>4 6 8 10</td>
</tr>
<tr>
<td>b = 1</td>
<td>3 5 7 9</td>
<td>5 7 9 11</td>
</tr>
<tr>
<td>b = 2</td>
<td>4 6 8 10</td>
<td>6 8 10 12</td>
</tr>
<tr>
<td>b = 3</td>
<td>5 7 9 11</td>
<td>7 9 11 13</td>
</tr>
<tr>
<td>b = 4</td>
<td>6 8 10 12</td>
<td>8 10 12 14</td>
</tr>
<tr>
<td>b = 5</td>
<td>7 9 11 13</td>
<td>9 11 13 15</td>
</tr>
<tr>
<td>b = 6</td>
<td>8 10 12 14</td>
<td>10 12 14 16</td>
</tr>
</tbody>
</table>

Table 2: Resiliency of a System based on the Unified Model (minimum number of processors required)

- 3) smarter degradation
 - we can specify the number of rounds
 - example using N = 11
 - let subscript max denote the maximum number of faults covered, assuming this is the only type of fault occurring.
 - if r = 1 then a_max = 1 or s_max = 4
 - if r = 2 then a_max = 2 or s_max = 4
 - why? s_max = 4 => N > 2 4 + 2 = 10
 s_max = 5 => N > 2 5 + 2 = 12

- requirements for success
 - good estimate of fail rates λ_a, λ_s, λ_b
 - typically λ_a << λ_s << λ_b
 - good estimate of recovery rates ρ_a, ρ_s, ρ_b
 - typically ρ_a < ρ_s < ρ_b
Agreement algorithms

- Azadmanesh & Kieckhafer
 - partitions further into transmissive and omissive cases of malicious faults

Diagram:
- All Faults
 - Malicious
 - Asymmetric
 - Transmissive Asymmetric
 - Strictly Omissive Asymmetric
 - Symmetric
 - Omissive Symmetric
 - Transmissive Symmetric
 - Benign

Agreement algorithms

- Incomplete Interconnections
 - Lam82, Dol82
 - agreement only if the number of processors is less than 1/2 of the connectivity of the system’s network.

- Eventual vs. Immediate Byz. Agreement (EBA, IBA)
 - recall interactive consistency conditions IC1, IC2
 - an agreement is immediate if in addition to IC1 and IC2 all correct processors also agree (during the round) on the round number at which they reach agreement.
 - otherwise the agreement is called eventual
 - each processor has decided on its value, but cannot synchronize its decision with that of the others until some later phase.
 - Thus, agreement may not always need full t+1 rounds
Agreement algorithms

- Lamport OM \[N \geq 3m + 1 \quad r = m + 1 \]
- Lamport SM \[N \geq m + 2 \quad r \geq m + 1 \]
- Davis+Wakerly \[N \geq 2t + 1 \quad S = t + 1 \]
- Meyer+Pradhan \[N > 3m + b \quad r \geq m \]
- Thambidurai+Park \[N > 2a + 2s + b + r \quad r \geq a \]
- Dol82a (EBA) \[N > t^2 + 3t + 4 \quad r = \min(f + 2, t + 1) \]