Davis / Wakerly

- The following discussion is based on a paper by Davis and Wakerly
 - Synchronization and Matching in Redundant Systems
 - IEEE Trans. on Computers
 - Vol. c-27, No 6, June 1978

- This is an example of what can happen when one can make assumptions about the capabilities of components of the system

- Main objective:
 - this is an old paper, but there are important messages, e.g.:
 - agreement can be “rolled out” in (or supported by) hardware
 - one can manipulate the fault assumptions

Davis / Wakerly

- Hardware aided solution
 - requires \(N \geq 2t + 1 \) processors + extra hardware
 - Synchronizer module

\[
\text{voter} \quad \text{delay } d
\]
processors with synchronizer modules

Configuration

\[N \geq 2t + 1 = \# \text{ of lanes} \quad S \geq t + 1 = \# \text{ of stages} \]
Simplex: Data Transition Error

Hardware Interstages = Broadcast Repeaters
- Processors vote on multiple copies received
Simplex

- Case 1: Processor A is faulty (commander is traitor)
 - Interstages may receive different values
 - But: each interstage receives only ONE value
 - Each interstage correctly forwards the values received
 - Each processor receives the SAME three values
 - Majority votes are identical
- Case 2: An Interstage is faulty (commander is loyal)
 - All interstages receive the same value from Processor A
 - Two correct interstages forward correct value
 - Each processor receives 2 correct values
 - 2-of-3 majority

Difference from OM(1) Algorithm

- Processor Broadcast => Round 0 (initial broadcast)
- Interstage Broadcast => Round 1 (rebroadcast)
- Single-fault lies either in processor or in interstage, but not in both!
 - fault can not cause error in both rounds
 - therefore there is one error free round
 - same effect as discarding data in OM(1) algorithm
 - can thus achieve agreement without discarding data
- Result: can achieve agreement with 3 processing lanes instead of 4 processors required by OM(1)
- Disadvantage: requires extra hardware (stages)
Multiplex Solution

- Option 1: just replicate Simplex Solution
 - each interstage receives 3 messages and broadcasts 9 messages
 - each processor receives 9 values to vote upon

- Option 2: Install voters in interstages
 - each interstage receives 3 messages and broadcasts 3 messages
 - each processor receives 3 values to vote upon
Multiplex

- Case 1: Processor A is faulty (commander is traitor)
 - Interstages may receive different values
 - Interstage may send different values
 - But: each interstage sends the same value to all processors
 - Each processor receives the SAME set of values
 - Majority votes are identical

- Case 2: An Interstage is faulty (commander is loyal)
 - All interstages receive identical sets of values
 - Two interstages forward correct value to all processors
 - Each processor receives 2 correct values
 - All processors get the same majority

Hardware Requirements

- Number of Lanes (rows) = 3
 - need to get 2-of-3 majority
- Number of Stages (columns) = 2
 - needed to assure one error free round
 - agreement is achieved at output of first non-faulty state.
 - once agreement is achieved, a minority of faulty nodes cannot disrupt it.
Two fault solution

Summary

<table>
<thead>
<tr>
<th></th>
<th>Davis / Wakerly</th>
<th>OM(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$N \geq 2t + 1$</td>
<td>$N \geq 3t + 1$</td>
</tr>
<tr>
<td>S</td>
<td>$S = t + 1$</td>
<td>$r \geq t + 1$</td>
</tr>
<tr>
<td>HW complexity</td>
<td>$2t^2 + 3t + 1$</td>
<td>$3t + 1$</td>
</tr>
<tr>
<td>messages</td>
<td>$2t^2 + 3t + 1$</td>
<td>$O(N^{t+1})$</td>
</tr>
</tbody>
</table>

Davis / Wakerly

© 2016 A.W. Krings

Page: 13

CS449/549 Fault-Tolerant Systems Sequence 17

© 2016 A.W. Krings

Page: 14

CS449/549 Fault-Tolerant Systems Sequence 17